File: type.ml

package info (click to toggle)
haxe 1%3A3.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 23,464 kB
  • ctags: 9,612
  • sloc: ml: 83,200; ansic: 1,724; makefile: 473; java: 349; cs: 314; python: 250; sh: 43; cpp: 39; xml: 25
file content (2115 lines) | stat: -rw-r--r-- 67,136 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
(*
 * Copyright (C)2005-2013 Haxe Foundation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *)

open Ast

type path = string list * string

type field_kind =
	| Var of var_kind
	| Method of method_kind

and var_kind = {
	v_read : var_access;
	v_write : var_access;
}

and var_access =
	| AccNormal
	| AccNo				(* can't be accessed outside of the class itself and its subclasses *)
	| AccNever			(* can't be accessed, even in subclasses *)
	| AccResolve		(* call resolve("field") when accessed *)
	| AccCall			(* perform a method call when accessed *)
	| AccInline			(* similar to Normal but inline when accessed *)
	| AccRequire of string * string option (* set when @:require(cond) fails *)

and method_kind =
	| MethNormal
	| MethInline
	| MethDynamic
	| MethMacro

type t =
	| TMono of t option ref
	| TEnum of tenum * tparams
	| TInst of tclass * tparams
	| TType of tdef * tparams
	| TFun of (string * bool * t) list * t
	| TAnon of tanon
	| TDynamic of t
	| TLazy of (unit -> t) ref
	| TAbstract of tabstract * tparams

and tparams = t list

and type_params = (string * t) list

and tconstant =
	| TInt of int32
	| TFloat of string
	| TString of string
	| TBool of bool
	| TNull
	| TThis
	| TSuper

and tvar = {
	mutable v_id : int;
	mutable v_name : string;
	mutable v_type : t;
	mutable v_capture : bool;
	mutable v_extra : (type_params * texpr option) option;
	mutable v_meta : metadata;
}

and tfunc = {
	tf_args : (tvar * tconstant option) list;
	tf_type : t;
	tf_expr : texpr;
}

and anon_status =
	| Closed
	| Opened
	| Const
	| Extend of t list
	| Statics of tclass
	| EnumStatics of tenum
	| AbstractStatics of tabstract

and tanon = {
	mutable a_fields : (string, tclass_field) PMap.t;
	a_status : anon_status ref;
}

and texpr_expr =
	| TConst of tconstant
	| TLocal of tvar
	| TArray of texpr * texpr
	| TBinop of Ast.binop * texpr * texpr
	| TField of texpr * tfield_access
	| TTypeExpr of module_type
	| TParenthesis of texpr
	| TObjectDecl of (string * texpr) list
	| TArrayDecl of texpr list
	| TCall of texpr * texpr list
	| TNew of tclass * tparams * texpr list
	| TUnop of Ast.unop * Ast.unop_flag * texpr
	| TFunction of tfunc
	| TVar of tvar * texpr option
	| TBlock of texpr list
	| TFor of tvar * texpr * texpr
	| TIf of texpr * texpr * texpr option
	| TWhile of texpr * texpr * Ast.while_flag
	| TSwitch of texpr * (texpr list * texpr) list * texpr option
	| TTry of texpr * (tvar * texpr) list
	| TReturn of texpr option
	| TBreak
	| TContinue
	| TThrow of texpr
	| TCast of texpr * module_type option
	| TMeta of metadata_entry * texpr
	| TEnumParameter of texpr * tenum_field * int

and tfield_access =
	| FInstance of tclass * tparams * tclass_field
	| FStatic of tclass * tclass_field
	| FAnon of tclass_field
	| FDynamic of string
	| FClosure of (tclass * tparams) option * tclass_field (* None class = TAnon *)
	| FEnum of tenum * tenum_field

and texpr = {
	eexpr : texpr_expr;
	etype : t;
	epos : Ast.pos;
}

and tclass_field = {
	mutable cf_name : string;
	mutable cf_type : t;
	mutable cf_public : bool;
	cf_pos : pos;
	mutable cf_doc : Ast.documentation;
	mutable cf_meta : metadata;
	mutable cf_kind : field_kind;
	mutable cf_params : type_params;
	mutable cf_expr : texpr option;
	mutable cf_overloads : tclass_field list;
}

and tclass_kind =
	| KNormal
	| KTypeParameter of t list
	| KExtension of tclass * tparams
	| KExpr of Ast.expr
	| KGeneric
	| KGenericInstance of tclass * tparams
	| KMacroType
	| KGenericBuild of class_field list
	| KAbstractImpl of tabstract

and metadata = Ast.metadata

and tinfos = {
	mt_path : path;
	mt_module : module_def;
	mt_pos : Ast.pos;
	mt_private : bool;
	mt_doc : Ast.documentation;
	mutable mt_meta : metadata;
	mt_params : type_params;
}

and tclass = {
	mutable cl_path : path;
	mutable cl_module : module_def;
	mutable cl_pos : Ast.pos;
	mutable cl_private : bool;
	mutable cl_doc : Ast.documentation;
	mutable cl_meta : metadata;
	mutable cl_params : type_params;
	(* do not insert any fields above *)
	mutable cl_kind : tclass_kind;
	mutable cl_extern : bool;
	mutable cl_interface : bool;
	mutable cl_super : (tclass * tparams) option;
	mutable cl_implements : (tclass * tparams) list;
	mutable cl_fields : (string , tclass_field) PMap.t;
	mutable cl_statics : (string, tclass_field) PMap.t;
	mutable cl_ordered_statics : tclass_field list;
	mutable cl_ordered_fields : tclass_field list;
	mutable cl_dynamic : t option;
	mutable cl_array_access : t option;
	mutable cl_constructor : tclass_field option;
	mutable cl_init : texpr option;
	mutable cl_overrides : tclass_field list;

	mutable cl_build : unit -> bool;
	mutable cl_restore : unit -> unit;
}

and tenum_field = {
	ef_name : string;
	ef_type : t;
	ef_pos : Ast.pos;
	ef_doc : Ast.documentation;
	ef_index : int;
	ef_params : type_params;
	mutable ef_meta : metadata;
}

and tenum = {
	mutable e_path : path;
	e_module : module_def;
	e_pos : Ast.pos;
	e_private : bool;
	e_doc : Ast.documentation;
	mutable e_meta : metadata;
	mutable e_params : type_params;
	(* do not insert any fields above *)
	e_type : tdef;
	mutable e_extern : bool;
	mutable e_constrs : (string , tenum_field) PMap.t;
	mutable e_names : string list;
}

and tdef = {
	t_path : path;
	t_module : module_def;
	t_pos : Ast.pos;
	t_private : bool;
	t_doc : Ast.documentation;
	mutable t_meta : metadata;
	mutable t_params : type_params;
	(* do not insert any fields above *)
	mutable t_type : t;
}

and tabstract = {
	mutable a_path : path;
	a_module : module_def;
	a_pos : Ast.pos;
	a_private : bool;
	a_doc : Ast.documentation;
	mutable a_meta : metadata;
	mutable a_params : type_params;
	(* do not insert any fields above *)
	mutable a_ops : (Ast.binop * tclass_field) list;
	mutable a_unops : (Ast.unop * unop_flag * tclass_field) list;
	mutable a_impl : tclass option;
	mutable a_this : t;
	mutable a_from : t list;
	mutable a_from_field : (t * tclass_field) list;
	mutable a_to : t list;
	mutable a_to_field : (t * tclass_field) list;
	mutable a_array : tclass_field list;
}

and module_type =
	| TClassDecl of tclass
	| TEnumDecl of tenum
	| TTypeDecl of tdef
	| TAbstractDecl of tabstract

and module_def = {
	m_id : int;
	m_path : path;
	mutable m_types : module_type list;
	m_extra : module_def_extra;
}

and module_def_extra = {
	m_file : string;
	m_sign : string;
	mutable m_time : float;
	mutable m_dirty : bool;
	mutable m_added : int;
	mutable m_mark : int;
	mutable m_deps : (int,module_def) PMap.t;
	mutable m_processed : int;
	mutable m_kind : module_kind;
	mutable m_binded_res : (string, string) PMap.t;
	mutable m_macro_calls : string list;
	mutable m_if_feature : (string *(tclass * tclass_field * bool)) list;
	mutable m_features : (string,bool) Hashtbl.t;
}

and module_kind =
	| MCode
	| MMacro
	| MFake
	| MSub
	| MExtern

and dt =
	| DTSwitch of texpr * (texpr * dt) list * dt option
	| DTBind of ((tvar * pos) * texpr) list * dt
	| DTGoto of int
	| DTExpr of texpr
	| DTGuard of texpr * dt * dt option

and decision_tree = {
	dt_dt_lookup : dt array;
	dt_first : int;
	dt_type : t;
	dt_var_init : (tvar * texpr option) list;
	dt_is_complex : bool;
}

(* ======= General utility ======= *)

let alloc_var =
	let uid = ref 0 in
	(fun n t -> incr uid; { v_name = n; v_type = t; v_id = !uid; v_capture = false; v_extra = None; v_meta = [] })

let alloc_unbound_var n t =
	let v = alloc_var n t in
	v.v_meta <- [Meta.Unbound,[],null_pos];
	v

let alloc_mid =
	let mid = ref 0 in
	(fun() -> incr mid; !mid)

let mk e t p = { eexpr = e; etype = t; epos = p }

let mk_block e =
	match e.eexpr with
	| TBlock _ -> e
	| _ -> mk (TBlock [e]) e.etype e.epos

let mk_cast e t p = mk (TCast(e,None)) t p

let null t p = mk (TConst TNull) t p

let mk_mono() = TMono (ref None)

let rec t_dynamic = TDynamic t_dynamic

let tfun pl r = TFun (List.map (fun t -> "",false,t) pl,r)

let fun_args l = List.map (fun (a,c,t) -> a, c <> None, t) l

let mk_class m path pos =
	{
		cl_path = path;
		cl_module = m;
		cl_pos = pos;
		cl_doc = None;
		cl_meta = [];
		cl_private = false;
		cl_kind = KNormal;
		cl_extern = false;
		cl_interface = false;
		cl_params = [];
		cl_super = None;
		cl_implements = [];
		cl_fields = PMap.empty;
		cl_ordered_statics = [];
		cl_ordered_fields = [];
		cl_statics = PMap.empty;
		cl_dynamic = None;
		cl_array_access = None;
		cl_constructor = None;
		cl_init = None;
		cl_overrides = [];
		cl_build = (fun() -> true);
		cl_restore = (fun() -> ());
	}

let module_extra file sign time kind =
	{
		m_file = file;
		m_sign = sign;
		m_dirty = false;
		m_added = 0;
		m_mark = 0;
		m_time = time;
		m_processed = 0;
		m_deps = PMap.empty;
		m_kind = kind;
		m_binded_res = PMap.empty;
		m_macro_calls = [];
		m_if_feature = [];
		m_features = Hashtbl.create 0;
	}


let mk_field name t p = {
	cf_name = name;
	cf_type = t;
	cf_pos = p;
	cf_doc = None;
	cf_meta = [];
	cf_public = true;
	cf_kind = Var { v_read = AccNormal; v_write = AccNormal };
	cf_expr = None;
	cf_params = [];
	cf_overloads = [];
}

let null_module = {
		m_id = alloc_mid();
		m_path = [] , "";
		m_types = [];
		m_extra = module_extra "" "" 0. MFake;
	}

let null_class =
	let c = mk_class null_module ([],"") Ast.null_pos in
	c.cl_private <- true;
	c

let null_field = mk_field "" t_dynamic Ast.null_pos

let null_abstract = {
	a_path = ([],"");
	a_module = null_module;
	a_pos = null_pos;
	a_private = true;
	a_doc = None;
	a_meta = [];
	a_params = [];
	a_ops = [];
	a_unops = [];
	a_impl = None;
	a_this = t_dynamic;
	a_from = [];
	a_from_field = [];
	a_to = [];
	a_to_field = [];
	a_array = [];
}

let add_dependency m mdep =
	if m != null_module && m != mdep then m.m_extra.m_deps <- PMap.add mdep.m_id mdep m.m_extra.m_deps

let arg_name (a,_) = a.v_name

let t_infos t : tinfos =
	match t with
	| TClassDecl c -> Obj.magic c
	| TEnumDecl e -> Obj.magic e
	| TTypeDecl t -> Obj.magic t
	| TAbstractDecl a -> Obj.magic a

let t_path t = (t_infos t).mt_path

let rec is_parent csup c =
	if c == csup || List.exists (fun (i,_) -> is_parent csup i) c.cl_implements then
		true
	else match c.cl_super with
		| None -> false
		| Some (c,_) -> is_parent csup c

let map loop t =
	match t with
	| TMono r ->
		(match !r with
		| None -> t
		| Some t -> loop t) (* erase*)
	| TEnum (_,[]) | TInst (_,[]) | TType (_,[]) ->
		t
	| TEnum (e,tl) ->
		TEnum (e, List.map loop tl)
	| TInst (c,tl) ->
		TInst (c, List.map loop tl)
	| TType (t2,tl) ->
		TType (t2,List.map loop tl)
	| TAbstract (a,tl) ->
		TAbstract (a,List.map loop tl)
	| TFun (tl,r) ->
		TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
	| TAnon a ->
		let fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields in
		begin match !(a.a_status) with
			| Opened ->
				a.a_fields <- fields;
				t
			| _ ->
	 			TAnon {
					a_fields = fields;
					a_status = a.a_status;
				}
		end
	| TLazy f ->
		let ft = !f() in
		let ft2 = loop ft in
		if ft == ft2 then t else ft2
	| TDynamic t2 ->
		if t == t2 then	t else TDynamic (loop t2)

(* substitute parameters with other types *)
let apply_params cparams params t =
	match cparams with
	| [] -> t
	| _ ->
	let rec loop l1 l2 =
		match l1, l2 with
		| [] , [] -> []
		| (x,TLazy f) :: l1, _ -> loop ((x,(!f)()) :: l1) l2
		| (_,t1) :: l1 , t2 :: l2 -> (t1,t2) :: loop l1 l2
		| _ -> assert false
	in
	let subst = loop cparams params in
	let rec loop t =
		try
			List.assq t subst
		with Not_found ->
		match t with
		| TMono r ->
			(match !r with
			| None -> t
			| Some t -> loop t)
		| TEnum (e,tl) ->
			(match tl with
			| [] -> t
			| _ -> TEnum (e,List.map loop tl))
		| TType (t2,tl) ->
			(match tl with
			| [] -> t
			| _ -> TType (t2,List.map loop tl))
		| TAbstract (a,tl) ->
			(match tl with
			| [] -> t
			| _ -> TAbstract (a,List.map loop tl))
		| TInst (c,tl) ->
			(match tl with
			| [] ->
				t
			| [TMono r] ->
				(match !r with
				| Some tt when t == tt ->
					(* for dynamic *)
					let pt = mk_mono() in
					let t = TInst (c,[pt]) in
					(match pt with TMono r -> r := Some t | _ -> assert false);
					t
				| _ -> TInst (c,List.map loop tl))
			| _ ->
				TInst (c,List.map loop tl))
		| TFun (tl,r) ->
			TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
		| TAnon a ->
			let fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields in
			begin match !(a.a_status) with
				| Opened ->
					a.a_fields <- fields;
					t
				| _ ->
		 			TAnon {
						a_fields = fields;
						a_status = a.a_status;
					}
			end
		| TLazy f ->
			let ft = !f() in
			let ft2 = loop ft in
			if ft == ft2 then
				t
			else
				ft2
		| TDynamic t2 ->
			if t == t2 then
				t
			else
				TDynamic (loop t2)
	in
	loop t

let monomorphs eparams t =
	apply_params eparams (List.map (fun _ -> mk_mono()) eparams) t

let rec follow t =
	match t with
	| TMono r ->
		(match !r with
		| Some t -> follow t
		| _ -> t)
	| TLazy f ->
		follow (!f())
	| TType (t,tl) ->
		follow (apply_params t.t_params tl t.t_type)
	| _ -> t

let rec is_nullable = function
	| TMono r ->
		(match !r with None -> false | Some t -> is_nullable t)
	| TType ({ t_path = ([],"Null") },[_]) ->
		true
	| TLazy f ->
		is_nullable (!f())
	| TType (t,tl) ->
		is_nullable (apply_params t.t_params tl t.t_type)
	| TFun _ ->
		false
(*
	Type parameters will most of the time be nullable objects, so we don't want to make it hard for users
	to have to specify Null<T> all over the place, so while they could be a basic type, let's assume they will not.

	This will still cause issues with inlining and haxe.rtti.Generic. In that case proper explicit Null<T> is required to
	work correctly with basic types. This could still be fixed by redoing a nullability inference on the typed AST.

	| TInst ({ cl_kind = KTypeParameter },_) -> false
*)
	| TAbstract (a,_) when Meta.has Meta.CoreType a.a_meta ->
		not (Meta.has Meta.NotNull a.a_meta)
	| TAbstract (a,tl) ->
		not (Meta.has Meta.NotNull a.a_meta) && is_nullable (apply_params a.a_params tl a.a_this)
	| _ ->
		true

let rec is_null ?(no_lazy=false) = function
	| TMono r ->
		(match !r with None -> false | Some t -> is_null t)
	| TType ({ t_path = ([],"Null") },[t]) ->
		not (is_nullable (follow t))
	| TLazy f ->
		if no_lazy then raise Exit else is_null (!f())
	| TType (t,tl) ->
		is_null (apply_params t.t_params tl t.t_type)
	| _ ->
		false

(* Determines if we have a Null<T>. Unlike is_null, this returns true even if the wrapped type is nullable itself. *)
let rec is_explicit_null = function
	| TMono r ->
		(match !r with None -> false | Some t -> is_null t)
	| TType ({ t_path = ([],"Null") },[t]) ->
		true
	| TLazy f ->
		is_null (!f())
	| TType (t,tl) ->
		is_null (apply_params t.t_params tl t.t_type)
	| _ ->
		false

let rec has_mono t = match t with
	| TMono r ->
		(match !r with None -> true | Some t -> has_mono t)
	| TInst(_,pl) | TEnum(_,pl) | TAbstract(_,pl) | TType(_,pl) ->
		List.exists has_mono pl
	| TDynamic _ ->
		false
	| TFun(args,r) ->
		has_mono r || List.exists (fun (_,_,t) -> has_mono t) args
	| TAnon a ->
		PMap.fold (fun cf b -> has_mono cf.cf_type || b) a.a_fields false
	| TLazy r ->
		has_mono (!r())

let concat e1 e2 =
	let e = (match e1.eexpr, e2.eexpr with
		| TBlock el1, TBlock el2 -> TBlock (el1@el2)
		| TBlock el, _ -> TBlock (el @ [e2])
		| _, TBlock el -> TBlock (e1 :: el)
		| _ , _ -> TBlock [e1;e2]
	) in
	mk e e2.etype (punion e1.epos e2.epos)

let is_closed a = !(a.a_status) <> Opened

let type_of_module_type = function
	| TClassDecl c -> TInst (c,List.map snd c.cl_params)
	| TEnumDecl e -> TEnum (e,List.map snd e.e_params)
	| TTypeDecl t -> TType (t,List.map snd t.t_params)
	| TAbstractDecl a -> TAbstract (a,List.map snd a.a_params)

(* ======= Field utility ======= *)

let field_name f =
	match f with
	| FAnon f | FInstance (_,_,f) | FStatic (_,f) | FClosure (_,f) -> f.cf_name
	| FEnum (_,f) -> f.ef_name
	| FDynamic n -> n

let extract_field = function
	| FAnon f | FInstance (_,_,f) | FStatic (_,f) | FClosure (_,f) -> Some f
	| _ -> None

let is_extern_field f =
	match f.cf_kind with
	| Method _ -> false
	| Var { v_read = AccNormal | AccInline | AccNo } | Var { v_write = AccNormal | AccNo } -> false
	| _ -> not (Meta.has Meta.IsVar f.cf_meta)

let field_type f =
	match f.cf_params with
	| [] -> f.cf_type
	| l -> monomorphs l f.cf_type

let rec raw_class_field build_type c tl i =
	let apply = apply_params c.cl_params tl in
	try
		let f = PMap.find i c.cl_fields in
		Some (c,tl), build_type f , f
	with Not_found -> try (match c.cl_constructor with
		| Some ctor when i = "new" -> Some (c,tl), build_type ctor,ctor
		| _ -> raise Not_found)
	with Not_found -> try
		match c.cl_super with
		| None ->
			raise Not_found
		| Some (c,tl) ->
			let c2 , t , f = raw_class_field build_type c (List.map apply tl) i in
			c2, apply_params c.cl_params tl t , f
	with Not_found ->
		match c.cl_kind with
		| KTypeParameter tl ->
			let rec loop = function
				| [] ->
					raise Not_found
				| t :: ctl ->
					match follow t with
					| TAnon a ->
						(try
							let f = PMap.find i a.a_fields in
							None, build_type f, f
						with
							Not_found -> loop ctl)
					| TInst (c,tl) ->
						(try
							let c2, t , f = raw_class_field build_type c (List.map apply tl) i in
							c2, apply_params c.cl_params tl t, f
						with
							Not_found -> loop ctl)
					| _ ->
						loop ctl
			in
			loop tl
		| _ ->
			if not c.cl_interface then raise Not_found;
			(*
				an interface can implements other interfaces without
				having to redeclare its fields
			*)
			let rec loop = function
				| [] ->
					raise Not_found
				| (c,tl) :: l ->
					try
						let c2, t , f = raw_class_field build_type c (List.map apply tl) i in
						c2, apply_params c.cl_params tl t, f
					with
						Not_found -> loop l
			in
			loop c.cl_implements

let class_field = raw_class_field field_type

let quick_field t n =
	match follow t with
	| TInst (c,tl) ->
		let c, _, f = raw_class_field (fun f -> f.cf_type) c tl n in
		(match c with None -> FAnon f | Some (c,tl) -> FInstance (c,tl,f))
	| TAnon a ->
		(match !(a.a_status) with
		| EnumStatics e ->
			let ef = PMap.find n e.e_constrs in
			FEnum(e,ef)
		| Statics c ->
			FStatic (c,PMap.find n c.cl_statics)
		| AbstractStatics a ->
			begin match a.a_impl with
				| Some c ->
					let cf = PMap.find n c.cl_statics in
					FStatic(c,cf) (* is that right? *)
				| _ ->
					raise Not_found
			end
		| _ ->
			FAnon (PMap.find n a.a_fields))
	| TDynamic _ ->
		FDynamic n
	| TEnum _  | TMono _ | TAbstract _ | TFun _ ->
		raise Not_found
	| TLazy _ | TType _ ->
		assert false

let quick_field_dynamic t s =
	try quick_field t s
	with Not_found -> FDynamic s

let rec get_constructor build_type c =
	match c.cl_constructor, c.cl_super with
	| Some c, _ -> build_type c, c
	| None, None -> raise Not_found
	| None, Some (csup,cparams) ->
		let t, c = get_constructor build_type csup in
		apply_params csup.cl_params cparams t, c

(* ======= Printing ======= *)

let print_context() = ref []

let rec s_type_kind t =
	let map tl = String.concat ", " (List.map s_type_kind tl) in
	match t with
	| TMono r ->
		begin match !r with
			| None -> "TMono (None)"
			| Some t -> "TMono (Some (" ^ (s_type_kind t) ^ "))"
		end
	| TEnum(en,tl) -> Printf.sprintf "TEnum(%s, [%s])" (s_type_path en.e_path) (map tl)
	| TInst(c,tl) -> Printf.sprintf "TInst(%s, [%s])" (s_type_path c.cl_path) (map tl)
	| TType(t,tl) -> Printf.sprintf "TType(%s, [%s])" (s_type_path t.t_path) (map tl)
	| TAbstract(a,tl) -> Printf.sprintf "TAbstract(%s, [%s])" (s_type_path a.a_path) (map tl)
	| TFun(tl,r) -> Printf.sprintf "TFun([%s], %s)" (String.concat ", " (List.map (fun (n,b,t) -> Printf.sprintf "%s%s:%s" (if b then "?" else "") n (s_type_kind t)) tl)) (s_type_kind r)
	| TAnon an -> "TAnon"
	| TDynamic t2 -> "TDynamic"
	| TLazy _ -> "TLazy"

let rec s_type ctx t =
	match t with
	| TMono r ->
		(match !r with
		| None -> Printf.sprintf "Unknown<%d>" (try List.assq t (!ctx) with Not_found -> let n = List.length !ctx in ctx := (t,n) :: !ctx; n)
		| Some t -> s_type ctx t)
	| TEnum (e,tl) ->
		Ast.s_type_path e.e_path ^ s_type_params ctx tl
	| TInst (c,tl) ->
		(match c.cl_kind with
		| KExpr e -> Ast.s_expr e
		| _ -> Ast.s_type_path c.cl_path ^ s_type_params ctx tl)
	| TType (t,tl) ->
		Ast.s_type_path t.t_path ^ s_type_params ctx tl
	| TAbstract (a,tl) ->
		Ast.s_type_path a.a_path ^ s_type_params ctx tl
	| TFun ([],t) ->
		"Void -> " ^ s_fun ctx t false
	| TFun (l,t) ->
		String.concat " -> " (List.map (fun (s,b,t) ->
			(if b then "?" else "") ^ (if s = "" then "" else s ^ " : ") ^ s_fun ctx t true
		) l) ^ " -> " ^ s_fun ctx t false
	| TAnon a ->
		let fl = PMap.fold (fun f acc -> ((if Meta.has Meta.Optional f.cf_meta then " ?" else " ") ^ f.cf_name ^ " : " ^ s_type ctx f.cf_type) :: acc) a.a_fields [] in
		"{" ^ (if not (is_closed a) then "+" else "") ^  String.concat "," fl ^ " }"
	| TDynamic t2 ->
		"Dynamic" ^ s_type_params ctx (if t == t2 then [] else [t2])
	| TLazy f ->
		s_type ctx (!f())

and s_fun ctx t void =
	match t with
	| TFun _ ->
		"(" ^ s_type ctx t ^ ")"
	| TAbstract ({ a_path = ([],"Void") },[]) when void ->
		"(" ^ s_type ctx t ^ ")"
	| TMono r ->
		(match !r with
		| None -> s_type ctx t
		| Some t -> s_fun ctx t void)
	| TLazy f ->
		s_fun ctx (!f()) void
	| _ ->
		s_type ctx t

and s_type_params ctx = function
	| [] -> ""
	| l -> "<" ^ String.concat ", " (List.map (s_type ctx) l) ^ ">"

let s_access is_read = function
	| AccNormal -> "default"
	| AccNo -> "null"
	| AccNever -> "never"
	| AccResolve -> "resolve"
	| AccCall -> if is_read then "get" else "set"
	| AccInline	-> "inline"
	| AccRequire (n,_) -> "require " ^ n

let s_kind = function
	| Var { v_read = AccNormal; v_write = AccNormal } -> "var"
	| Var v -> "(" ^ s_access true v.v_read ^ "," ^ s_access false v.v_write ^ ")"
	| Method m ->
		match m with
		| MethNormal -> "method"
		| MethDynamic -> "dynamic method"
		| MethInline -> "inline method"
		| MethMacro -> "macro method"

let s_expr_kind e =
	match e.eexpr with
	| TConst _ -> "Const"
	| TLocal _ -> "Local"
	| TArray (_,_) -> "Array"
	| TBinop (_,_,_) -> "Binop"
	| TEnumParameter (_,_,_) -> "EnumParameter"
	| TField (_,_) -> "Field"
	| TTypeExpr _ -> "TypeExpr"
	| TParenthesis _ -> "Parenthesis"
	| TObjectDecl _ -> "ObjectDecl"
	| TArrayDecl _ -> "ArrayDecl"
	| TCall (_,_) -> "Call"
	| TNew (_,_,_) -> "New"
	| TUnop (_,_,_) -> "Unop"
	| TFunction _ -> "Function"
	| TVar _ -> "Vars"
	| TBlock _ -> "Block"
	| TFor (_,_,_) -> "For"
	| TIf (_,_,_) -> "If"
	| TWhile (_,_,_) -> "While"
	| TSwitch (_,_,_) -> "Switch"
	| TTry (_,_) -> "Try"
	| TReturn _ -> "Return"
	| TBreak -> "Break"
	| TContinue -> "Continue"
	| TThrow _ -> "Throw"
	| TCast _ -> "Cast"
	| TMeta _ -> "Meta"

let s_const = function
	| TInt i -> Int32.to_string i
	| TFloat s -> s
	| TString s -> Printf.sprintf "\"%s\"" (Ast.s_escape s)
	| TBool b -> if b then "true" else "false"
	| TNull -> "null"
	| TThis -> "this"
	| TSuper -> "super"

let rec s_expr s_type e =
	let sprintf = Printf.sprintf in
	let slist f l = String.concat "," (List.map f l) in
	let loop = s_expr s_type in
	let s_var v = v.v_name ^ ":" ^ string_of_int v.v_id ^ if v.v_capture then "[c]" else "" in
	let str = (match e.eexpr with
	| TConst c ->
		"Const " ^ s_const c
	| TLocal v ->
		"Local " ^ s_var v
	| TArray (e1,e2) ->
		sprintf "%s[%s]" (loop e1) (loop e2)
	| TBinop (op,e1,e2) ->
		sprintf "(%s %s %s)" (loop e1) (s_binop op) (loop e2)
	| TEnumParameter (e1,_,i) ->
		sprintf "%s[%i]" (loop e1) i
	| TField (e,f) ->
		let fstr = (match f with
			| FStatic (c,f) -> "static(" ^ s_type_path c.cl_path ^ "." ^ f.cf_name ^ ")"
			| FInstance (c,_,f) -> "inst(" ^ s_type_path c.cl_path ^ "." ^ f.cf_name ^ " : " ^ s_type f.cf_type ^ ")"
			| FClosure (c,f) -> "closure(" ^ (match c with None -> f.cf_name | Some (c,_) -> s_type_path c.cl_path ^ "." ^ f.cf_name)  ^ ")"
			| FAnon f -> "anon(" ^ f.cf_name ^ ")"
			| FEnum (en,f) -> "enum(" ^ s_type_path en.e_path ^ "." ^ f.ef_name ^ ")"
			| FDynamic f -> "dynamic(" ^ f ^ ")"
		) in
		sprintf "%s.%s" (loop e) fstr
	| TTypeExpr m ->
		sprintf "TypeExpr %s" (s_type_path (t_path m))
	| TParenthesis e ->
		sprintf "Parenthesis %s" (loop e)
	| TObjectDecl fl ->
		sprintf "ObjectDecl {%s}" (slist (fun (f,e) -> sprintf "%s : %s" f (loop e)) fl)
	| TArrayDecl el ->
		sprintf "ArrayDecl [%s]" (slist loop el)
	| TCall (e,el) ->
		sprintf "Call %s(%s)" (loop e) (slist loop el)
	| TNew (c,pl,el) ->
		sprintf "New %s%s(%s)" (s_type_path c.cl_path) (match pl with [] -> "" | l -> sprintf "<%s>" (slist s_type l)) (slist loop el)
	| TUnop (op,f,e) ->
		(match f with
		| Prefix -> sprintf "(%s %s)" (s_unop op) (loop e)
		| Postfix -> sprintf "(%s %s)" (loop e) (s_unop op))
	| TFunction f ->
		let args = slist (fun (v,o) -> sprintf "%s : %s%s" (s_var v) (s_type v.v_type) (match o with None -> "" | Some c -> " = " ^ s_const c)) f.tf_args in
		sprintf "Function(%s) : %s = %s" args (s_type f.tf_type) (loop f.tf_expr)
	| TVar (v,eo) ->
		sprintf "Vars %s" (sprintf "%s : %s%s" (s_var v) (s_type v.v_type) (match eo with None -> "" | Some e -> " = " ^ loop e))
	| TBlock el ->
		sprintf "Block {\n%s}" (String.concat "" (List.map (fun e -> sprintf "%s;\n" (loop e)) el))
	| TFor (v,econd,e) ->
		sprintf "For (%s : %s in %s,%s)" (s_var v) (s_type v.v_type) (loop econd) (loop e)
	| TIf (e,e1,e2) ->
		sprintf "If (%s,%s%s)" (loop e) (loop e1) (match e2 with None -> "" | Some e -> "," ^ loop e)
	| TWhile (econd,e,flag) ->
		(match flag with
		| NormalWhile -> sprintf "While (%s,%s)" (loop econd) (loop e)
		| DoWhile -> sprintf "DoWhile (%s,%s)" (loop e) (loop econd))
	| TSwitch (e,cases,def) ->
		sprintf "Switch (%s,(%s)%s)" (loop e) (slist (fun (cl,e) -> sprintf "case %s: %s" (slist loop cl) (loop e)) cases) (match def with None -> "" | Some e -> "," ^ loop e)
	| TTry (e,cl) ->
		sprintf "Try %s(%s) " (loop e) (slist (fun (v,e) -> sprintf "catch( %s : %s ) %s" (s_var v) (s_type v.v_type) (loop e)) cl)
	| TReturn None ->
		"Return"
	| TReturn (Some e) ->
		sprintf "Return %s" (loop e)
	| TBreak ->
		"Break"
	| TContinue ->
		"Continue"
	| TThrow e ->
		"Throw " ^ (loop e)
	| TCast (e,t) ->
		sprintf "Cast %s%s" (match t with None -> "" | Some t -> s_type_path (t_path t) ^ ": ") (loop e)
	| TMeta ((n,el,_),e) ->
		sprintf "@%s%s %s" (Meta.to_string n) (match el with [] -> "" | _ -> "(" ^ (String.concat ", " (List.map Ast.s_expr el)) ^ ")") (loop e)
	) in
	sprintf "(%s : %s)" str (s_type e.etype)

and s_dt tabs tree =
	let s_type = s_type (print_context()) in
	tabs ^ match tree with
	| DTSwitch (st,cl,dto) ->
		"switch(" ^ (s_expr s_type st) ^ ") { \n" ^ tabs
		^ (String.concat ("\n" ^ tabs) (List.map (fun (c,dt) ->
			"case " ^ (s_expr s_type c) ^ ":\n" ^ (s_dt (tabs ^ "\t") dt)
		) cl))
		^ (match dto with None -> "" | Some dt -> tabs ^ "default: " ^ (s_dt (tabs ^ "\t") dt))
		^ "\n" ^ (if String.length tabs = 0 then "" else (String.sub tabs 0 (String.length tabs - 1))) ^ "}"
	| DTBind (bl, dt) -> "bind " ^ (String.concat "," (List.map (fun ((v,_),st) -> v.v_name ^ "(" ^ (string_of_int v.v_id) ^ ") =" ^ (s_expr s_type st)) bl)) ^ "\n" ^ (s_dt tabs dt)
	| DTGoto i ->
		"goto " ^ (string_of_int i)
	| DTExpr e -> s_expr s_type e
	| DTGuard (e,dt1,dt2) -> "if(" ^ (s_expr s_type e) ^ ") " ^ (s_dt tabs dt1) ^ (match dt2 with None -> "" | Some dt -> " else " ^ (s_dt tabs dt))

let rec s_expr_pretty tabs s_type e =
	let sprintf = Printf.sprintf in
	let loop = s_expr_pretty tabs s_type in
	let slist f l = String.concat "," (List.map f l) in
	match e.eexpr with
	| TConst c -> s_const c
	| TLocal v -> v.v_name
	| TArray (e1,e2) -> sprintf "%s[%s]" (loop e1) (loop e2)
	| TBinop (op,e1,e2) -> sprintf "%s %s %s" (loop e1) (s_binop op) (loop e2)
	| TEnumParameter (e1,_,i) -> sprintf "%s[%i]" (loop e1) i
	| TField (e1,s) -> sprintf "%s.%s" (loop e1) (field_name s)
	| TTypeExpr mt -> (s_type_path (t_path mt))
	| TParenthesis e1 -> sprintf "(%s)" (loop e1)
	| TObjectDecl fl -> sprintf "{%s}" (slist (fun (f,e) -> sprintf "%s : %s" f (loop e)) fl)
	| TArrayDecl el -> sprintf "[%s]" (slist loop el)
	| TCall (e1,el) -> sprintf "%s(%s)" (loop e1) (slist loop el)
	| TNew (c,pl,el) ->
		sprintf "new %s(%s)" (s_type_path c.cl_path) (slist loop el)
	| TUnop (op,f,e) ->
		(match f with
		| Prefix -> sprintf "%s %s" (s_unop op) (loop e)
		| Postfix -> sprintf "%s %s" (loop e) (s_unop op))
	| TFunction f ->
		let args = slist (fun (v,o) -> sprintf "%s:%s%s" v.v_name (s_type v.v_type) (match o with None -> "" | Some c -> " = " ^ s_const c)) f.tf_args in
		sprintf "function(%s) = %s" args (loop f.tf_expr)
	| TVar (v,eo) ->
		sprintf "var %s" (sprintf "%s%s" v.v_name (match eo with None -> "" | Some e -> " = " ^ loop e))
	| TBlock el ->
		let ntabs = tabs ^ "\t" in
		let s = sprintf "{\n%s" (String.concat "" (List.map (fun e -> sprintf "%s%s;\n" ntabs (s_expr_pretty ntabs s_type e)) el)) in
		s ^ tabs ^ "}"
	| TFor (v,econd,e) ->
		sprintf "for (%s in %s) %s" v.v_name (loop econd) (loop e)
	| TIf (e,e1,e2) ->
		sprintf "if (%s)%s%s" (loop e) (loop e1) (match e2 with None -> "" | Some e -> " else " ^ loop e)
	| TWhile (econd,e,flag) ->
		(match flag with
		| NormalWhile -> sprintf "while (%s) %s" (loop econd) (loop e)
		| DoWhile -> sprintf "do (%s) while(%s)" (loop e) (loop econd))
	| TSwitch (e,cases,def) ->
		let ntabs = tabs ^ "\t" in
		let s = sprintf "switch (%s) {\n%s%s" (loop e) (slist (fun (cl,e) -> sprintf "%scase %s: %s\n" ntabs (slist loop cl) (s_expr_pretty ntabs s_type e)) cases) (match def with None -> "" | Some e -> ntabs ^ "default: " ^ (s_expr_pretty ntabs s_type e) ^ "\n") in
		s ^ tabs ^ "}"
	| TTry (e,cl) ->
		sprintf "try %s%s" (loop e) (slist (fun (v,e) -> sprintf "catch( %s : %s ) %s" v.v_name (s_type v.v_type) (loop e)) cl)
	| TReturn None ->
		"return"
	| TReturn (Some e) ->
		sprintf "return %s" (loop e)
	| TBreak ->
		"break"
	| TContinue ->
		"continue"
	| TThrow e ->
		"throw " ^ (loop e)
	| TCast (e,None) ->
		sprintf "cast %s" (loop e)
	| TCast (e,Some mt) ->
		sprintf "cast (%s,%s)" (loop e) (s_type_path (t_path mt))
	| TMeta ((n,el,_),e) ->
		sprintf "@%s%s %s" (Meta.to_string n) (match el with [] -> "" | _ -> "(" ^ (String.concat ", " (List.map Ast.s_expr el)) ^ ")") (loop e)

let rec s_expr_ast print_var_ids tabs s_type e =
	let sprintf = Printf.sprintf in
	let loop ?(extra_tabs="") = s_expr_ast print_var_ids (tabs ^ "\t" ^ extra_tabs) s_type in
	let tag_args tabs sl = match sl with
		| [] -> ""
		| [s] when not (String.contains s '\n') -> " " ^ s
		| _ ->
			let tabs = "\n" ^ tabs ^ "\t" in
			tabs ^ (String.concat tabs sl)
	in
	let tag s ?(t=None) ?(extra_tabs="") sl =
		let st = match t with
			| None -> s_type e.etype
			| Some t -> s_type t
		in
		sprintf "[%s:%s]%s" s st (tag_args (tabs ^ extra_tabs) sl)
	in
	let var_id v = if print_var_ids then v.v_id else 0 in
	let const c = sprintf "[Const %s:%s]" (s_const c) (s_type e.etype) in
	let local v = sprintf "[Local %s(%i):%s]" v.v_name (var_id v) (s_type v.v_type) in
	let var v sl = sprintf "[Var %s(%i):%s]%s" v.v_name (var_id v) (s_type v.v_type) (tag_args tabs sl) in
	let module_type mt = sprintf "[TypeExpr %s:%s]" (s_type_path (t_path mt)) (s_type e.etype) in
	match e.eexpr with
	| TConst c -> const c
	| TLocal v -> local v
	| TArray (e1,e2) -> tag "Array" [loop e1; loop e2]
	| TBinop (op,e1,e2) -> tag "Binop" [loop e1; s_binop op; loop e2]
	| TUnop (op,flag,e1) -> tag "Unop" [s_unop op; if flag = Postfix then "Postfix" else "Prefix"; loop e1]
	| TEnumParameter (e1,ef,i) -> tag "EnumParameter" [loop e1; ef.ef_name; string_of_int i]
	| TField (e1,fa) ->
		let sfa = match fa with
			| FInstance(c,tl,cf) -> tag "FInstance" ~extra_tabs:"\t" [s_type (TInst(c,tl)); cf.cf_name]
			| FStatic(c,cf) -> tag "FStatic" ~extra_tabs:"\t" [s_type_path c.cl_path; cf.cf_name]
			| FClosure(co,cf) -> tag "FClosure" ~extra_tabs:"\t" [(match co with None -> "None" | Some (c,tl) -> s_type (TInst(c,tl))); cf.cf_name]
			| FAnon cf -> tag "FAnon" ~extra_tabs:"\t" [cf.cf_name]
			| FDynamic s -> tag "FDynamic" ~extra_tabs:"\t" [s]
			| FEnum(en,ef) -> tag "FEnum" ~extra_tabs:"\t" [s_type_path en.e_path; ef.ef_name]
		in
		tag "Field" [loop e1; sfa]
	| TTypeExpr mt -> module_type mt
	| TParenthesis e1 -> tag "Parenthesis" [loop e1]
	| TObjectDecl fl -> tag "ObjectDecl" (List.map (fun (s,e) -> sprintf "%s: %s" s (loop e)) fl)
	| TArrayDecl el -> tag "ArrayDecl" (List.map loop el)
	| TCall (e1,el) -> tag "Call" (loop e1 :: (List.map loop el))
	| TNew (c,tl,el) -> tag "New" ((s_type (TInst(c,tl))) :: (List.map loop el))
	| TFunction f ->
		let arg (v,cto) =
			tag "Arg" ~t:(Some v.v_type) ~extra_tabs:"\t" (match cto with None -> [local v] | Some ct -> [local v;const ct])
		in
		tag "Function" ((List.map arg f.tf_args) @ [loop f.tf_expr])
	| TVar (v,eo) -> var v (match eo with None -> [] | Some e -> [loop e])
	| TBlock el -> tag "Block" (List.map loop el)
	| TIf (e,e1,e2) -> tag "If" (loop e :: (Printf.sprintf "[Then:%s] %s" (s_type e1.etype) (loop e1)) :: (match e2 with None -> [] | Some e -> [Printf.sprintf "[Else:%s] %s" (s_type e.etype) (loop e)]))
	| TCast (e1,None) -> tag "Cast" [loop e1]
	| TCast (e1,Some mt) -> tag "Cast" [loop e1; module_type mt]
	| TThrow e1 -> tag "Throw" [loop e1]
	| TBreak -> tag "Break" []
	| TContinue -> tag "Continue" []
	| TReturn None -> tag "Return" []
	| TReturn (Some e1) -> tag "Return" [loop e1]
	| TWhile (e1,e2,NormalWhile) -> tag "While" [loop e1; loop e2]
	| TWhile (e1,e2,DoWhile) -> tag "Do" [loop e1; loop e2]
	| TFor (v,e1,e2) -> tag "For" [local v; loop e1; loop e2]
	| TTry (e1,catches) ->
		let sl = List.map (fun (v,e) ->
			sprintf "Catch %s%s" (local v) (tag_args (tabs ^ "\t") [loop ~extra_tabs:"\t" e]);
		) catches in
		tag "Try" ((loop e1) :: sl)
	| TSwitch (e1,cases,eo) ->
		let sl = List.map (fun (el,e) ->
			tag "Case" ~t:(Some e.etype) ~extra_tabs:"\t" ((List.map loop el) @ [loop ~extra_tabs:"\t" e])
		) cases in
		let sl = match eo with
			| None -> sl
			| Some e -> sl @ [tag "Default" ~t:(Some e.etype) ~extra_tabs:"\t" [loop ~extra_tabs:"\t" e]]
		in
		tag "Switch" ((loop e1) :: sl)
	| TMeta ((m,el,_),e1) ->
		let s = Meta.to_string m in
		let s = match el with
			| [] -> s
			| _ -> sprintf "%s(%s)" s (String.concat ", " (List.map Ast.s_expr el))
		in
		tag "Meta" [s; loop e1]

let s_types ?(sep = ", ") tl =
	let pctx = print_context() in
	String.concat sep (List.map (s_type pctx) tl)

let s_class_kind = function
	| KNormal ->
		"KNormal"
	| KTypeParameter tl ->
		Printf.sprintf "KTypeParameter [%s]" (s_types tl)
	| KExtension(c,tl) ->
		Printf.sprintf "KExtension %s<%s>" (s_type_path c.cl_path) (s_types tl)
	| KExpr _ ->
		"KExpr"
	| KGeneric ->
		"KGeneric"
	| KGenericInstance(c,tl) ->
		Printf.sprintf "KGenericInstance %s<%s>" (s_type_path c.cl_path) (s_types tl)
	| KMacroType ->
		"KMacroType"
	| KGenericBuild _ ->
		"KGenericBuild"
	| KAbstractImpl a ->
		Printf.sprintf "KAbstractImpl %s" (s_type_path a.a_path)

(* ======= Unification ======= *)

let rec link e a b =
	(* tell if setting a == b will create a type-loop *)
	let rec loop t =
		if t == a then
			true
		else match t with
		| TMono t -> (match !t with None -> false | Some t -> loop t)
		| TEnum (_,tl) -> List.exists loop tl
		| TInst (_,tl) | TType (_,tl) | TAbstract (_,tl) -> List.exists loop tl
		| TFun (tl,t) -> List.exists (fun (_,_,t) -> loop t) tl || loop t
		| TDynamic t2 ->
			if t == t2 then
				false
			else
				loop t2
		| TLazy f ->
			loop (!f())
		| TAnon a ->
			try
				PMap.iter (fun _ f -> if loop f.cf_type then raise Exit) a.a_fields;
				false
			with
				Exit -> true
	in
	(* tell is already a ~= b *)
	if loop b then
		(follow b) == a
	else if b == t_dynamic then
		true
	else begin
		e := Some b;
		true
	end

let rec fast_eq a b =
	if a == b then
		true
	else match a , b with
	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
		List.for_all2 (fun (_,_,t1) (_,_,t2) -> fast_eq t1 t2) l1 l2 && fast_eq r1 r2
	| TType (t1,l1), TType (t2,l2) ->
		t1 == t2 && List.for_all2 fast_eq l1 l2
	| TEnum (e1,l1), TEnum (e2,l2) ->
		e1 == e2 && List.for_all2 fast_eq l1 l2
	| TInst (c1,l1), TInst (c2,l2) ->
		c1 == c2 && List.for_all2 fast_eq l1 l2
	| TAbstract (a1,l1), TAbstract (a2,l2) ->
		a1 == a2 && List.for_all2 fast_eq l1 l2
	| _ , _ ->
		false

let rec fast_eq_mono ml a b =
	if a == b then
		true
	else match a , b with
	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
		List.for_all2 (fun (_,_,t1) (_,_,t2) -> fast_eq_mono ml t1 t2) l1 l2 && fast_eq_mono ml r1 r2
	| TType (t1,l1), TType (t2,l2) ->
		t1 == t2 && List.for_all2 (fast_eq_mono ml) l1 l2
	| TEnum (e1,l1), TEnum (e2,l2) ->
		e1 == e2 && List.for_all2 (fast_eq_mono ml) l1 l2
	| TInst (c1,l1), TInst (c2,l2) ->
		c1 == c2 && List.for_all2 (fast_eq_mono ml) l1 l2
	| TAbstract (a1,l1), TAbstract (a2,l2) ->
		a1 == a2 && List.for_all2 (fast_eq_mono ml) l1 l2
	| TMono _, _ ->
		List.memq a ml
	| _ , _ ->
		false

(* perform unification with subtyping.
   the first type is always the most down in the class hierarchy
   it's also the one that is pointed by the position.
   It's actually a typecheck of  A :> B where some mutations can happen *)

type unify_error =
	| Cannot_unify of t * t
	| Invalid_field_type of string
	| Has_no_field of t * string
	| Has_no_runtime_field of t * string
	| Has_extra_field of t * string
	| Invalid_kind of string * field_kind * field_kind
	| Invalid_visibility of string
	| Not_matching_optional of string
	| Cant_force_optional
	| Invariant_parameter of t * t
	| Constraint_failure of string
	| Missing_overload of tclass_field * t
	| Unify_custom of string

exception Unify_error of unify_error list

let cannot_unify a b = Cannot_unify (a,b)
let invalid_field n = Invalid_field_type n
let invalid_kind n a b = Invalid_kind (n,a,b)
let invalid_visibility n = Invalid_visibility n
let has_no_field t n = Has_no_field (t,n)
let has_extra_field t n = Has_extra_field (t,n)
let error l = raise (Unify_error l)
let has_meta m ml = List.exists (fun (m2,_,_) -> m = m2) ml
let get_meta m ml = List.find (fun (m2,_,_) -> m = m2) ml
let no_meta = []

(*
	we can restrict access as soon as both are runtime-compatible
*)
let unify_access a1 a2 =
	a1 = a2 || match a1, a2 with
	| _, AccNo | _, AccNever -> true
	| AccInline, AccNormal -> true
	| _ -> false

let direct_access = function
	| AccNo | AccNever | AccNormal | AccInline | AccRequire _ -> true
	| AccResolve | AccCall -> false

let unify_kind k1 k2 =
	k1 = k2 || match k1, k2 with
		| Var v1, Var v2 -> unify_access v1.v_read v2.v_read && unify_access v1.v_write v2.v_write
		| Var v, Method m ->
			(match v.v_read, v.v_write, m with
			| AccNormal, _, MethNormal -> true
			| AccNormal, AccNormal, MethDynamic -> true
			| _ -> false)
		| Method m, Var v ->
			(match m with
			| MethDynamic -> direct_access v.v_read && direct_access v.v_write
			| MethMacro -> false
			| MethNormal | MethInline ->
				match v.v_write with
				| AccNo | AccNever -> true
				| _ -> false)
		| Method m1, Method m2 ->
			match m1,m2 with
			| MethInline, MethNormal
			| MethDynamic, MethNormal -> true
			| _ -> false

let eq_stack = ref []

type eq_kind =
	| EqStrict
	| EqCoreType
	| EqRightDynamic
	| EqBothDynamic
	| EqDoNotFollowNull (* like EqStrict, but does not follow Null<T> *)

let rec type_eq param a b =
	let can_follow t = match param with
		| EqCoreType -> false
		| EqDoNotFollowNull -> not (is_null t)
		| _ -> true
	in
	if a == b then
		()
	else match a , b with
	| TLazy f , _ -> type_eq param (!f()) b
	| _ , TLazy f -> type_eq param a (!f())
	| TMono t , _ ->
		(match !t with
		| None -> if param = EqCoreType || not (link t a b) then error [cannot_unify a b]
		| Some t -> type_eq param t b)
	| _ , TMono t ->
		(match !t with
		| None -> if param = EqCoreType || not (link t b a) then error [cannot_unify a b]
		| Some t -> type_eq param a t)
	| TType (t1,tl1), TType (t2,tl2) when (t1 == t2 || (param = EqCoreType && t1.t_path = t2.t_path)) && List.length tl1 = List.length tl2 ->
		List.iter2 (type_eq param) tl1 tl2
	| TType (t,tl) , _ when can_follow a ->
		type_eq param (apply_params t.t_params tl t.t_type) b
	| _ , TType (t,tl) when can_follow b ->
		if List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!eq_stack) then
			()
		else begin
			eq_stack := (a,b) :: !eq_stack;
			try
				type_eq param a (apply_params t.t_params tl t.t_type);
				eq_stack := List.tl !eq_stack;
			with
				Unify_error l ->
					eq_stack := List.tl !eq_stack;
					error (cannot_unify a b :: l)
		end
	| TEnum (e1,tl1) , TEnum (e2,tl2) ->
		if e1 != e2 && not (param = EqCoreType && e1.e_path = e2.e_path) then error [cannot_unify a b];
		List.iter2 (type_eq param) tl1 tl2
	| TInst (c1,tl1) , TInst (c2,tl2) ->
		if c1 != c2 && not (param = EqCoreType && c1.cl_path = c2.cl_path) && (match c1.cl_kind, c2.cl_kind with KExpr _, KExpr _ -> false | _ -> true) then error [cannot_unify a b];
		List.iter2 (type_eq param) tl1 tl2
	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
		(try
			type_eq param r1 r2;
			List.iter2 (fun (n,o1,t1) (_,o2,t2) ->
				if o1 <> o2 then error [Not_matching_optional n];
				type_eq param t1 t2
			) l1 l2
		with
			Unify_error l -> error (cannot_unify a b :: l))
	| TDynamic a , TDynamic b ->
		type_eq param a b
	| TAbstract (a1,tl1) , TAbstract (a2,tl2) ->
		if a1 != a2 && not (param = EqCoreType && a1.a_path = a2.a_path) then error [cannot_unify a b];
		List.iter2 (type_eq param) tl1 tl2
	| TAnon a1, TAnon a2 ->
		(try
			PMap.iter (fun n f1 ->
				try
					let f2 = PMap.find n a2.a_fields in
					if f1.cf_kind <> f2.cf_kind && (param = EqStrict || param = EqCoreType || not (unify_kind f1.cf_kind f2.cf_kind)) then error [invalid_kind n f1.cf_kind f2.cf_kind];
					try
						type_eq param f1.cf_type f2.cf_type
					with
						Unify_error l -> error (invalid_field n :: l)
				with
					Not_found ->
						if is_closed a2 then error [has_no_field b n];
						if not (link (ref None) b f1.cf_type) then error [cannot_unify a b];
						a2.a_fields <- PMap.add n f1 a2.a_fields
			) a1.a_fields;
			PMap.iter (fun n f2 ->
				if not (PMap.mem n a1.a_fields) then begin
					if is_closed a1 then error [has_no_field a n];
					if not (link (ref None) a f2.cf_type) then error [cannot_unify a b];
					a1.a_fields <- PMap.add n f2 a1.a_fields
				end;
			) a2.a_fields;
		with
			Unify_error l -> error (cannot_unify a b :: l))
	| _ , _ ->
		if b == t_dynamic && (param = EqRightDynamic || param = EqBothDynamic) then
			()
		else if a == t_dynamic && param = EqBothDynamic then
			()
		else
			error [cannot_unify a b]

let type_iseq a b =
	try
		type_eq EqStrict a b;
		true
	with
		Unify_error _ -> false

let unify_stack = ref []
let abstract_cast_stack = ref []
let unify_new_monos = ref []

let rec unify a b =
	if a == b then
		()
	else match a, b with
	| TLazy f , _ -> unify (!f()) b
	| _ , TLazy f -> unify a (!f())
	| TMono t , _ ->
		(match !t with
		| None -> if not (link t a b) then error [cannot_unify a b]
		| Some t -> unify t b)
	| _ , TMono t ->
		(match !t with
		| None -> if not (link t b a) then error [cannot_unify a b]
		| Some t -> unify a t)
	| TType (t,tl) , _ ->
		if not (List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!unify_stack)) then begin
			try
				unify_stack := (a,b) :: !unify_stack;
				unify (apply_params t.t_params tl t.t_type) b;
				unify_stack := List.tl !unify_stack;
			with
				Unify_error l ->
					unify_stack := List.tl !unify_stack;
					error (cannot_unify a b :: l)
		end
	| _ , TType (t,tl) ->
		if not (List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!unify_stack)) then begin
			try
				unify_stack := (a,b) :: !unify_stack;
				unify a (apply_params t.t_params tl t.t_type);
				unify_stack := List.tl !unify_stack;
			with
				Unify_error l ->
					unify_stack := List.tl !unify_stack;
					error (cannot_unify a b :: l)
		end
	| TEnum (ea,tl1) , TEnum (eb,tl2) ->
		if ea != eb then error [cannot_unify a b];
		unify_type_params a b tl1 tl2
	| TAbstract (a1,tl1) , TAbstract (a2,tl2) when a1 == a2 ->
		begin try
			unify_type_params a b tl1 tl2
		with Unify_error _ as err ->
			(* the type could still have a from/to relation to itself (issue #3494) *)
			begin try
				unify_abstracts a b a1 tl1 a2 tl2
			with Unify_error _ ->
				raise err
			end
		end
	| TAbstract ({a_path=[],"Void"},_) , _
	| _ , TAbstract ({a_path=[],"Void"},_) ->
		error [cannot_unify a b]
	| TAbstract (a1,tl1) , TAbstract (a2,tl2) ->
		unify_abstracts a b a1 tl1 a2 tl2
	| TInst (c1,tl1) , TInst (c2,tl2) ->
		let rec loop c tl =
			if c == c2 then begin
				unify_type_params a b tl tl2;
				true
			end else (match c.cl_super with
				| None -> false
				| Some (cs,tls) ->
					loop cs (List.map (apply_params c.cl_params tl) tls)
			) || List.exists (fun (cs,tls) ->
				loop cs (List.map (apply_params c.cl_params tl) tls)
			) c.cl_implements
			|| (match c.cl_kind with
			| KTypeParameter pl -> List.exists (fun t -> match follow t with TInst (cs,tls) -> loop cs (List.map (apply_params c.cl_params tl) tls) | _ -> false) pl
			| _ -> false)
		in
		if not (loop c1 tl1) then error [cannot_unify a b]
	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
		let i = ref 0 in
		(try
			(match r2 with
			| TAbstract ({a_path=[],"Void"},_) -> incr i
			| _ -> unify r1 r2; incr i);
			List.iter2 (fun (_,o1,t1) (_,o2,t2) ->
				if o1 && not o2 then error [Cant_force_optional];
				unify t1 t2;
				incr i
			) l2 l1 (* contravariance *)
		with
			Unify_error l ->
				let msg = if !i = 0 then "Cannot unify return types" else "Cannot unify argument " ^ (string_of_int !i) in
				error (cannot_unify a b :: Unify_custom msg :: l))
	| TInst (c,tl) , TAnon an ->
		if PMap.is_empty an.a_fields then (match c.cl_kind with
			| KTypeParameter pl ->
				(* one of the constraints must unify with { } *)
				if not (List.exists (fun t -> match follow t with TInst _ | TAnon _ -> true | _ -> false) pl) then error [cannot_unify a b]
			| _ -> ());
		(try
			PMap.iter (fun n f2 ->
				(*
					introducing monomorphs while unifying might create infinite loops - see #2315
					let's store these monomorphs and make sure we reach a fixed point
				*)
				let monos = ref [] in
				let make_type f =
					match f.cf_params with
					| [] -> f.cf_type
					| l ->
						let ml = List.map (fun _ -> mk_mono()) l in
						monos := ml;
						apply_params f.cf_params ml f.cf_type
				in
				let _, ft, f1 = (try raw_class_field make_type c tl n with Not_found -> error [has_no_field a n]) in
				let ft = apply_params c.cl_params tl ft in
				if not (unify_kind f1.cf_kind f2.cf_kind) then error [invalid_kind n f1.cf_kind f2.cf_kind];
				if f2.cf_public && not f1.cf_public then error [invalid_visibility n];
				let old_monos = !unify_new_monos in
				unify_new_monos := !monos @ !unify_new_monos;
				if not (List.exists (fun (a2,b2) -> fast_eq b2 f2.cf_type && fast_eq_mono !unify_new_monos ft a2) (!unify_stack)) then begin
					unify_stack := (ft,f2.cf_type) :: !unify_stack;
					(try
						unify_with_access ft f2
					with
						Unify_error l ->
							unify_new_monos := old_monos;
							unify_stack := List.tl !unify_stack;
							error (invalid_field n :: l));
					unify_stack := List.tl !unify_stack;
				end;
				unify_new_monos := old_monos;
				List.iter (fun f2o ->
					if not (List.exists (fun f1o -> type_iseq f1o.cf_type f2o.cf_type) (f1 :: f1.cf_overloads))
					then error [Missing_overload (f1, f2o.cf_type)]
				) f2.cf_overloads;
				(* we mark the field as :?used because it might be used through the structure *)
				if not (Meta.has Meta.MaybeUsed f1.cf_meta) then f1.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: f1.cf_meta;
				(match f1.cf_kind with
				| Method MethInline ->
					if (c.cl_extern || Meta.has Meta.Extern f1.cf_meta) && not (Meta.has Meta.Runtime f1.cf_meta) then error [Has_no_runtime_field (a,n)];
				| _ -> ());
			) an.a_fields;
			(match !(an.a_status) with
			| Opened -> an.a_status := Closed;
			| Statics _ | EnumStatics _ | AbstractStatics _ -> error []
			| Closed | Extend _ | Const -> ())
		with
			Unify_error l -> error (cannot_unify a b :: l))
	| TAnon a1, TAnon a2 ->
		unify_anons a b a1 a2
	| TAnon an, TAbstract ({ a_path = [],"Class" },[pt]) ->
		(match !(an.a_status) with
		| Statics cl -> unify (TInst (cl,List.map (fun _ -> mk_mono()) cl.cl_params)) pt
		| _ -> error [cannot_unify a b])
	| TAnon an, TAbstract ({ a_path = [],"Enum" },[pt]) ->
		(match !(an.a_status) with
		| EnumStatics e -> unify (TEnum (e,List.map (fun _ -> mk_mono()) e.e_params)) pt
		| _ -> error [cannot_unify a b])
	| TEnum _, TAbstract ({ a_path = [],"EnumValue" },[]) ->
		()
	| TEnum(en,_), TAbstract ({ a_path = ["haxe"],"FlatEnum" },[]) when Meta.has Meta.FlatEnum en.e_meta ->
		()
	| TFun _, TAbstract ({ a_path = ["haxe"],"Function" },[]) ->
		()
	| TDynamic t , _ ->
		if t == a then
			()
		else (match b with
		| TDynamic t2 ->
			if t2 != b then
				(try
					type_eq EqRightDynamic t t2
				with
					Unify_error l -> error (cannot_unify a b :: l));
		| TAbstract(bb,tl) when (List.exists (unify_from bb tl a b) bb.a_from) ->
			()
		| _ ->
			error [cannot_unify a b])
	| _ , TDynamic t ->
		if t == b then
			()
		else (match a with
		| TDynamic t2 ->
			if t2 != a then
				(try
					type_eq EqRightDynamic t t2
				with
					Unify_error l -> error (cannot_unify a b :: l));
		| TAnon an ->
			(try
				(match !(an.a_status) with
				| Statics _ | EnumStatics _ -> error []
				| Opened -> an.a_status := Closed
				| _ -> ());
				PMap.iter (fun _ f ->
					try
						type_eq EqStrict (field_type f) t
					with Unify_error l ->
						error (invalid_field f.cf_name :: l)
				) an.a_fields
			with Unify_error l ->
				error (cannot_unify a b :: l))
		| TAbstract(aa,tl) when (List.exists (unify_to aa tl b) aa.a_to) ->
			()
		| _ ->
			error [cannot_unify a b])
	| TAbstract (aa,tl), _  ->
		if not (List.exists (unify_to aa tl b) aa.a_to) then error [cannot_unify a b];
	| TInst ({ cl_kind = KTypeParameter ctl } as c,pl), TAbstract (bb,tl) ->
		(* one of the constraints must satisfy the abstract *)
		if not (List.exists (fun t ->
			let t = apply_params c.cl_params pl t in
			try unify t b; true with Unify_error _ -> false
		) ctl) && not (List.exists (unify_from bb tl a b) bb.a_from) then error [cannot_unify a b];
	| _, TAbstract (bb,tl) ->
		if not (List.exists (unify_from bb tl a b) bb.a_from) then error [cannot_unify a b]
	| _ , _ ->
		error [cannot_unify a b]

and unify_abstracts a b a1 tl1 a2 tl2 =
	let f1 = unify_to a1 tl1 b in
		let f2 = unify_from a2 tl2 a b in
		if (List.exists (f1 ~allow_transitive_cast:false) a1.a_to)
		|| (List.exists (f2 ~allow_transitive_cast:false) a2.a_from)
		|| (((Meta.has Meta.CoreType a1.a_meta) || (Meta.has Meta.CoreType a2.a_meta))
			&& ((List.exists f1 a1.a_to) || (List.exists f2 a2.a_from))) then
			()
		else
			error [cannot_unify a b]

and unify_anons a b a1 a2 =
	(try
		PMap.iter (fun n f2 ->
		try
			let f1 = PMap.find n a1.a_fields in
			if not (unify_kind f1.cf_kind f2.cf_kind) then
				(match !(a1.a_status), f1.cf_kind, f2.cf_kind with
				| Opened, Var { v_read = AccNormal; v_write = AccNo }, Var { v_read = AccNormal; v_write = AccNormal } ->
					f1.cf_kind <- f2.cf_kind;
				| _ -> error [invalid_kind n f1.cf_kind f2.cf_kind]);
			if f2.cf_public && not f1.cf_public then error [invalid_visibility n];
			try
				unify_with_access f1.cf_type f2;
				(match !(a1.a_status) with
				| Statics c when not (Meta.has Meta.MaybeUsed f1.cf_meta) -> f1.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: f1.cf_meta
				| _ -> ());
			with
				Unify_error l -> error (invalid_field n :: l)
		with
			Not_found ->
				match !(a1.a_status) with
				| Opened ->
					if not (link (ref None) a f2.cf_type) then error [];
					a1.a_fields <- PMap.add n f2 a1.a_fields
				| Const when Meta.has Meta.Optional f2.cf_meta ->
					()
				| _ ->
					error [has_no_field a n];
		) a2.a_fields;
		(match !(a1.a_status) with
		| Const when not (PMap.is_empty a2.a_fields) ->
			PMap.iter (fun n _ -> if not (PMap.mem n a2.a_fields) then error [has_extra_field a n]) a1.a_fields;
		| Opened ->
			a1.a_status := Closed
		| _ -> ());
		(match !(a2.a_status) with
		| Statics c -> (match !(a1.a_status) with Statics c2 when c == c2 -> () | _ -> error [])
		| EnumStatics e -> (match !(a1.a_status) with EnumStatics e2 when e == e2 -> () | _ -> error [])
		| AbstractStatics a -> (match !(a1.a_status) with AbstractStatics a2 when a == a2 -> () | _ -> error [])
		| Opened -> a2.a_status := Closed
		| Const | Extend _ | Closed -> ())
	with
		Unify_error l -> error (cannot_unify a b :: l))

and unify_from ab tl a b ?(allow_transitive_cast=true) t =
	if (List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!abstract_cast_stack)) then false else begin
	abstract_cast_stack := (a,b) :: !abstract_cast_stack;
	let t = apply_params ab.a_params tl t in
	let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
	let b = try
		unify_func a t;
		true
	with Unify_error _ ->
		false
	in
	abstract_cast_stack := List.tl !abstract_cast_stack;
	b
	end

and unify_to ab tl b ?(allow_transitive_cast=true) t =
	let t = apply_params ab.a_params tl t in
	let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
	try
		unify_func t b;
		true
	with Unify_error _ ->
		false

and unify_from_field ab tl a b ?(allow_transitive_cast=true) (t,cf) =
	if (List.exists (fun (a2,b2) -> fast_eq a a2 && fast_eq b b2) (!abstract_cast_stack)) then false else begin
	abstract_cast_stack := (a,b) :: !abstract_cast_stack;
	let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
	let b = try
		begin match follow cf.cf_type with
			| TFun(_,r) ->
				let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
				let map t = apply_params ab.a_params tl (apply_params cf.cf_params monos t) in
				unify_func a (map t);
				List.iter2 (fun m (name,t) -> match follow t with
					| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
						List.iter (fun tc -> match follow m with TMono _ -> raise (Unify_error []) | _ -> unify m (map tc) ) constr
					| _ -> ()
				) monos cf.cf_params;
				unify_func (map r) b;
			| _ -> assert false
		end;
		true
	with Unify_error _ -> false
	in
	abstract_cast_stack := List.tl !abstract_cast_stack;
	b
	end

and unify_to_field ab tl b ?(allow_transitive_cast=true) (t,cf) =
	let a = TAbstract(ab,tl) in
	if (List.exists (fun (b2,a2) -> fast_eq a a2 && fast_eq b b2) (!abstract_cast_stack)) then false else begin
	abstract_cast_stack := (b,a) :: !abstract_cast_stack;
	let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
	let r = try
		begin match follow cf.cf_type with
			| TFun((_,_,ta) :: _,_) ->
				let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
				let map t = apply_params ab.a_params tl (apply_params cf.cf_params monos t) in
				let athis = map ab.a_this in
				(* we cannot allow implicit casts when the this type is not completely known yet *)
				(* if has_mono athis then raise (Unify_error []); *)
				with_variance (type_eq EqStrict) athis (map ta);
				(* immediate constraints checking is ok here because we know there are no monomorphs *)
				List.iter2 (fun m (name,t) -> match follow t with
					| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
						List.iter (fun tc -> match follow m with TMono _ -> raise (Unify_error []) | _ -> unify m (map tc) ) constr
					| _ -> ()
				) monos cf.cf_params;
				unify_func (map t) b;
			| _ -> assert false
		end;
		true
	with Unify_error _ -> false
	in
	abstract_cast_stack := List.tl !abstract_cast_stack;
	r
	end

and unify_with_variance f t1 t2 =
	let allows_variance_to t tf = type_iseq tf t in
	match follow t1,follow t2 with
	| TInst(c1,tl1),TInst(c2,tl2) when c1 == c2 ->
		List.iter2 f tl1 tl2
	| TEnum(en1,tl1),TEnum(en2,tl2) when en1 == en2 ->
		List.iter2 f tl1 tl2
	| TAbstract(a1,tl1),TAbstract(a2,tl2) when a1 == a2 && Meta.has Meta.CoreType a1.a_meta ->
		List.iter2 f tl1 tl2
	| TAbstract(a1,pl1),TAbstract(a2,pl2) ->
		if (Meta.has Meta.CoreType a1.a_meta) && (Meta.has Meta.CoreType a2.a_meta) then begin
			let ta1 = apply_params a1.a_params pl1 a1.a_this in
			let ta2 = apply_params a2.a_params pl2 a2.a_this in
			type_eq EqStrict ta1 ta2;
		end;
		if not (List.exists (allows_variance_to t2) a1.a_to) && not (List.exists (allows_variance_to t1) a2.a_from) then
			error [cannot_unify t1 t2]
	| TAbstract(a,pl),t ->
		type_eq EqBothDynamic (apply_params a.a_params pl a.a_this) t;
		if not (List.exists (fun t2 -> allows_variance_to t (apply_params a.a_params pl t2)) a.a_to) then error [cannot_unify t1 t2]
	| t,TAbstract(a,pl) ->
		type_eq EqBothDynamic t (apply_params a.a_params pl a.a_this);
		if not (List.exists (fun t2 -> allows_variance_to t (apply_params a.a_params pl t2)) a.a_from) then error [cannot_unify t1 t2]
	| TAnon a1,TAnon a2 ->
		unify_anons t1 t2 a1 a2
	| _ ->
		error [cannot_unify t1 t2]

and unify_type_params a b tl1 tl2 =
	List.iter2 (fun t1 t2 ->
		try
			with_variance (type_eq EqRightDynamic) t1 t2
		with Unify_error l ->
			let err = cannot_unify a b in
			error (err :: (Invariant_parameter (t1,t2)) :: l)
	) tl1 tl2

and with_variance f t1 t2 =
	try
		f t1 t2
	with Unify_error l -> try
		unify_with_variance (with_variance f) t1 t2
	with Unify_error _ ->
		raise (Unify_error l)

and unify_with_access t1 f2 =
	match f2.cf_kind with
	(* write only *)
	| Var { v_read = AccNo } | Var { v_read = AccNever } -> unify f2.cf_type t1
	(* read only *)
	| Method MethNormal | Method MethInline | Var { v_write = AccNo } | Var { v_write = AccNever } -> unify t1 f2.cf_type
	(* read/write *)
	| _ -> with_variance (type_eq EqBothDynamic) t1 f2.cf_type

module Abstract = struct
	open Ast

	let find_to ab pl b =
		if follow b == t_dynamic then
			List.find (fun (t,_) -> follow t == t_dynamic) ab.a_to_field
		else if List.exists (unify_to ab pl ~allow_transitive_cast:false b) ab.a_to then
			raise Not_found (* legacy compatibility *)
		else
			List.find (unify_to_field ab pl b) ab.a_to_field

	let find_from ab pl a b =
		if follow a == t_dynamic then
			List.find (fun (t,_) -> follow t == t_dynamic) ab.a_from_field
		else if List.exists (unify_from ab pl a ~allow_transitive_cast:false b) ab.a_from then
			raise Not_found (* legacy compatibility *)
		else
			List.find (unify_from_field ab pl a b) ab.a_from_field

	let underlying_type_stack = ref []

	let rec get_underlying_type a pl =
		let maybe_recurse t =
			underlying_type_stack := a :: !underlying_type_stack;
			let t = match follow t with
				| TAbstract(a,tl) when not (Meta.has Meta.CoreType a.a_meta) ->
					if List.mem a !underlying_type_stack then begin
						let s = String.concat " -> " (List.map (fun a -> s_type_path a.a_path) (List.rev (a :: !underlying_type_stack))) in
						raise (Error("Abstract chain detected: " ^ s,a.a_pos))
					end;
					get_underlying_type a tl
				| _ ->
					t
			in
			underlying_type_stack := List.tl !underlying_type_stack;
			t
		in
		try
			if not (Meta.has Meta.MultiType a.a_meta) then raise Not_found;
			let m = mk_mono() in
			let _ = find_to a pl m in
			maybe_recurse (follow m)
		with Not_found ->
			if Meta.has Meta.CoreType a.a_meta then
				t_dynamic
			else
				maybe_recurse (apply_params a.a_params pl a.a_this)

	let rec follow_with_abstracts t = match follow t with
		| TAbstract(a,tl) when not (Meta.has Meta.CoreType a.a_meta) ->
			follow_with_abstracts (get_underlying_type a tl)
		| t ->
			t
end

(* ======= Mapping and iterating ======= *)

let iter_dt f dt = match dt with
	| DTBind(_,dt) -> f dt
	| DTSwitch(_,cl,dto) ->
		List.iter (fun (_,dt) -> f dt) cl;
		(match dto with None -> () | Some dt -> f dt)
	| DTGuard(_,dt1,dt2) ->
		f dt1;
		(match dt2 with None -> () | Some dt -> f dt)
	| DTGoto _ | DTExpr _ -> ()

let iter f e =
	match e.eexpr with
	| TConst _
	| TLocal _
	| TBreak
	| TContinue
	| TTypeExpr _ ->
		()
	| TArray (e1,e2)
	| TBinop (_,e1,e2)
	| TFor (_,e1,e2)
	| TWhile (e1,e2,_) ->
		f e1;
		f e2;
	| TThrow e
	| TField (e,_)
	| TEnumParameter (e,_,_)
	| TParenthesis e
	| TCast (e,_)
	| TUnop (_,_,e)
	| TMeta(_,e) ->
		f e
	| TArrayDecl el
	| TNew (_,_,el)
	| TBlock el ->
		List.iter f el
	| TObjectDecl fl ->
		List.iter (fun (_,e) -> f e) fl
	| TCall (e,el) ->
		f e;
		List.iter f el
	| TVar (v,eo) ->
		(match eo with None -> () | Some e -> f e)
	| TFunction fu ->
		f fu.tf_expr
	| TIf (e,e1,e2) ->
		f e;
		f e1;
		(match e2 with None -> () | Some e -> f e)
	| TSwitch (e,cases,def) ->
		f e;
		List.iter (fun (el,e2) -> List.iter f el; f e2) cases;
		(match def with None -> () | Some e -> f e)
	| TTry (e,catches) ->
		f e;
		List.iter (fun (_,e) -> f e) catches
	| TReturn eo ->
		(match eo with None -> () | Some e -> f e)

let map_expr f e =
	match e.eexpr with
	| TConst _
	| TLocal _
	| TBreak
	| TContinue
	| TTypeExpr _ ->
		e
	| TArray (e1,e2) ->
		let e1 = f e1 in
		{ e with eexpr = TArray (e1,f e2) }
	| TBinop (op,e1,e2) ->
		let e1 = f e1 in
		{ e with eexpr = TBinop (op,e1,f e2) }
	| TFor (v,e1,e2) ->
		let e1 = f e1 in
		{ e with eexpr = TFor (v,e1,f e2) }
	| TWhile (e1,e2,flag) ->
		let e1 = f e1 in
		{ e with eexpr = TWhile (e1,f e2,flag) }
	| TThrow e1 ->
		{ e with eexpr = TThrow (f e1) }
	| TEnumParameter (e1,ef,i) ->
		 { e with eexpr = TEnumParameter(f e1,ef,i) }
	| TField (e1,v) ->
		{ e with eexpr = TField (f e1,v) }
	| TParenthesis e1 ->
		{ e with eexpr = TParenthesis (f e1) }
	| TUnop (op,pre,e1) ->
		{ e with eexpr = TUnop (op,pre,f e1) }
	| TArrayDecl el ->
		{ e with eexpr = TArrayDecl (List.map f el) }
	| TNew (t,pl,el) ->
		{ e with eexpr = TNew (t,pl,List.map f el) }
	| TBlock el ->
		{ e with eexpr = TBlock (List.map f el) }
	| TObjectDecl el ->
		{ e with eexpr = TObjectDecl (List.map (fun (v,e) -> v, f e) el) }
	| TCall (e1,el) ->
		{ e with eexpr = TCall (f e1, List.map f el) }
	| TVar (v,eo) ->
		{ e with eexpr = TVar (v, match eo with None -> None | Some e -> Some (f e)) }
	| TFunction fu ->
		{ e with eexpr = TFunction { fu with tf_expr = f fu.tf_expr } }
	| TIf (ec,e1,e2) ->
		let ec = f ec in
		let e1 = f e1 in
		{ e with eexpr = TIf (ec,e1,match e2 with None -> None | Some e -> Some (f e)) }
	| TSwitch (e1,cases,def) ->
		let e1 = f e1 in
		let cases = List.map (fun (el,e2) -> List.map f el, f e2) cases in
		{ e with eexpr = TSwitch (e1, cases, match def with None -> None | Some e -> Some (f e)) }
	| TTry (e1,catches) ->
		let e1 = f e1 in
		{ e with eexpr = TTry (e1, List.map (fun (v,e) -> v, f e) catches) }
	| TReturn eo ->
		{ e with eexpr = TReturn (match eo with None -> None | Some e -> Some (f e)) }
	| TCast (e1,t) ->
		{ e with eexpr = TCast (f e1,t) }
	| TMeta (m,e1) ->
		 {e with eexpr = TMeta(m,f e1)}

let map_expr_type f ft fv e =
	match e.eexpr with
	| TConst _
	| TBreak
	| TContinue
	| TTypeExpr _ ->
		{ e with etype = ft e.etype }
	| TLocal v ->
		{ e with eexpr = TLocal (fv v); etype = ft e.etype }
	| TArray (e1,e2) ->
		let e1 = f e1 in
		{ e with eexpr = TArray (e1,f e2); etype = ft e.etype }
	| TBinop (op,e1,e2) ->
		let e1 = f e1 in
		{ e with eexpr = TBinop (op,e1,f e2); etype = ft e.etype }
	| TFor (v,e1,e2) ->
		let v = fv v in
		let e1 = f e1 in
		{ e with eexpr = TFor (v,e1,f e2); etype = ft e.etype }
	| TWhile (e1,e2,flag) ->
		let e1 = f e1 in
		{ e with eexpr = TWhile (e1,f e2,flag); etype = ft e.etype }
	| TThrow e1 ->
		{ e with eexpr = TThrow (f e1); etype = ft e.etype }
	| TEnumParameter (e1,ef,i) ->
		{ e with eexpr = TEnumParameter(f e1,ef,i); etype = ft e.etype }
	| TField (e1,v) ->
		let e1 = f e1 in
		let v = try
			let n = match v with
				| FClosure _ -> raise Not_found
				| FAnon f | FInstance (_,_,f) | FStatic (_,f) -> f.cf_name
				| FEnum (_,f) -> f.ef_name
				| FDynamic n -> n
			in
			quick_field e1.etype n
		with Not_found ->
			v
		in
		{ e with eexpr = TField (e1,v); etype = ft e.etype }
	| TParenthesis e1 ->
		{ e with eexpr = TParenthesis (f e1); etype = ft e.etype }
	| TUnop (op,pre,e1) ->
		{ e with eexpr = TUnop (op,pre,f e1); etype = ft e.etype }
	| TArrayDecl el ->
		{ e with eexpr = TArrayDecl (List.map f el); etype = ft e.etype }
	| TNew (c,pl,el) ->
		let et = ft e.etype in
		(* make sure that we use the class corresponding to the replaced type *)
		let t = match c.cl_kind with
			| KTypeParameter _ | KGeneric ->
				et
			| _ ->
				ft (TInst(c,pl))
		in
		let c, pl = (match follow t with TInst (c,pl) -> (c,pl) | TAbstract({a_impl = Some c},pl) -> c,pl | t -> error [has_no_field t "new"]) in
		{ e with eexpr = TNew (c,pl,List.map f el); etype = et }
	| TBlock el ->
		{ e with eexpr = TBlock (List.map f el); etype = ft e.etype }
	| TObjectDecl el ->
		{ e with eexpr = TObjectDecl (List.map (fun (v,e) -> v, f e) el); etype = ft e.etype }
	| TCall (e1,el) ->
		let e1 = f e1 in
		{ e with eexpr = TCall (e1, List.map f el); etype = ft e.etype }
	| TVar (v,eo) ->
		{ e with eexpr = TVar (fv v, match eo with None -> None | Some e -> Some (f e)); etype = ft e.etype }
	| TFunction fu ->
		let fu = {
			tf_expr = f fu.tf_expr;
			tf_args = List.map (fun (v,o) -> fv v, o) fu.tf_args;
			tf_type = ft fu.tf_type;
		} in
		{ e with eexpr = TFunction fu; etype = ft e.etype }
	| TIf (ec,e1,e2) ->
		let ec = f ec in
		let e1 = f e1 in
		{ e with eexpr = TIf (ec,e1,match e2 with None -> None | Some e -> Some (f e)); etype = ft e.etype }
	| TSwitch (e1,cases,def) ->
		let e1 = f e1 in
		let cases = List.map (fun (el,e2) -> List.map f el, f e2) cases in
		{ e with eexpr = TSwitch (e1, cases, match def with None -> None | Some e -> Some (f e)); etype = ft e.etype }
	| TTry (e1,catches) ->
		let e1 = f e1 in
		{ e with eexpr = TTry (e1, List.map (fun (v,e) -> fv v, f e) catches); etype = ft e.etype }
	| TReturn eo ->
		{ e with eexpr = TReturn (match eo with None -> None | Some e -> Some (f e)); etype = ft e.etype }
	| TCast (e1,t) ->
		{ e with eexpr = TCast (f e1,t); etype = ft e.etype }
	| TMeta (m,e1) ->
		{e with eexpr = TMeta(m, f e1); etype = ft e.etype }

let print_if b e =
	if b then print_endline (s_expr_pretty "" (s_type (print_context())) e)