Building and Testing HDF-EOS5

James Laird, January 2007

The Current Build System

Users can build HDF-EOS5 and run its test suite on any supported system using its current system of Makefiles. This system can function alone or as one step of a larger install package.

However, this distribution relies on precompiled copies of the libGctp library so it will fail on any platform that is not officially supported. To build HDF-EOS5 on a new platform, libGctp must be built by hand and the makefiles must be updated to detect the new platform and to find the appropriate library.

This means that porting HDF-EOS5 to a new platform requires an effort by the package maintainer. Likewise, any significant changes to the platforms that HDF-EOS5 supports (a change in compilers or operating systems) may require maintenance work. More importantly from the users’ point of view, there are a number of platforms that HDF5 supports but HDF-EOS5 does not.

Although tests exist for the HDF-EOS5 library, they are not automated and are not run daily. Since building the HDF-EOS5 library requires user input at several stages, it would be very difficult to automate building and testing the library. The test output can only be interpreted by a human--there is no way for a script to tell whether the tests have failed or succeeded except by textually examining the output.

Building with Autotools

To address these issues, The HDF Group (THG) has added autotools (autoconf, automake, libtool) support to HDF-EOS5. The autotools are collection of open-source projects designed to simplify the building and testing process, and are already used by HDF5.

Using the autotools, HDF-EOS5 can be built on any platform that HDF5 supports with little or no effort by its maintainers or THG. HDF-EOS5 will include the source code for the libGctp library so users will not need to depend on the prebuilt binaries. The autotools will also completely automate the process so that HDF-EOS5 can use the same daily testing framework that HDF5 does.

In addition, the autotools are constantly being improved, so HDF-EOS5’s portability will improve along with HDF5’s as the autotool developers add platform support. Automake is in general more flexible than HDF-EOS5’s current build system, making it simple to add new make targets and allowing the user to specify a number of options (specifying the install directory, for instance). Many users are probably already familiar with the autotools.

Both Build Systems at Once

The autotools are more portable, easier to incoporate into automated test scripts, and more familiar to many users. HDF-EOS5’s current build system works with EOS5’s larger ClearCase install package and is familiar to current users. For the time being, the simplest solution seems to be to have both build systems present simultaneously so that users can use whichever is best for their situation.

The burden of maintaining two separate systems should be fairly low, since HDF-EOS5’s current system is only required to work on already-supported platforms and the autotools are already being used by HDF5. If maintenance becomes an issue, it may be worthwhile to revisit this design.

Examples of Build

To build and test HDF-EOS5 using autoconf and automake, the user should first copy the testdrivers directory into the hdfeos5 directory. If testdrivers is not present, HDF-EOS5 will still build but the tests will not be run.

To install HDF-EOS5 in the simple case (corresponding to the current build script), the user types:

./configure --with-hdf5=/path/to/hdf5 --libdir=/path/to/hdfeos/lib/linux

make install

Where /path/to/hdfeos is the path to the hdfeos source and linux is the current system.

The user can also run tests using “make check”. “make check” and “make install” can be invoked in any order once configure has been run. If there are any test errors, “make check” will fail. To run any make commands on a new system, the user needs to first run configure on that system. The build tree can only be configured for one system at a time.

There are a number of other options available. For instance, the user can specify the path to HDF5 by setting the environment variable CC to the binary h5cc that is installed as part of HDF5:

setenv CC /path/to/hdf5/bin/h5cc

./configure

make

make check

make install

By default, HDF-EOS5 only installs libraries, not include files. Users who want to install headers as well can configure with the option --enable-install-include .

./configure --enable-install-include

This installs libraries into hdfeos5/lib and headers into hdfeos5/include, similar to how HDF5 is installed by default. Users can use the --prefix option to change this install location for HDF-EOS5, or set library and include directories independently:

./configure --enable-install-include --prefix=/usr/local/hdfeos5

make install

./configure --libdir=/home/install/hdfeos5/lib/sun --includedir=/home/install/hdfeos5/include/sun

make install

Paths to zlib and szlib (either or both of which may be used by HDF5 and HDF-EOS5) can be supplied using --with-zlib and --with-szlib:

./configure --with-zlib=/usr/local/zlib --with-szlib=/usr/local/szlib

All of these options can be combined. The autotools will also honor the user’s setting of CFLAGS and support more options for advanced users (parallel make, separate include and bin install locations, etc.). To learn more about the autotools, see their online documentation at http://sources.redhat.com/autobook/autobook/autobook.html .

For a list of valid configuration options, simply type:

./configure --help
