File: hdl_ant.cpp

package info (click to toggle)
hdlant 2.1-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 216 kB
  • ctags: 382
  • sloc: cpp: 3,802; makefile: 40
file content (2476 lines) | stat: -rw-r--r-- 71,057 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
// HDL_ANT.CPP     copyright 1994 Paul Wade N1BWT 
// version 1.0e   18 August 1994 
// e version for the metric-impaired
//
//      Any licensed radio amateur may use this program without 
//      charge; all other persons must send $73 to the 
//      ARRL Foundation, 225 Main St., Newington, CT 06111

//The source file, HDL_ANT.CPP, was compiled using Borland C++ 
//version 3.1.  Any part of it may be modified or used as part
//of another program by any amateur radio operator, provided
//that credit is given and provided there is no charge for
//its use.

//Send problems, suggestions, and comments to Paul Wade, N1BWT.
//Expect support commensurate with the cost of the program!

//antenna.h - header file for antenna.cpp
//
// N1BWT 1994
// compiled with Borland C++ version 3.1

#include <math.h>
#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <ctype.h>
#include <strstrea.h>
#include <string.h>
#include <bios.h>
//#include <constrea.h>
#include <conio.h>


#include <ps.h>         // PostScript commands


#define LINESIZE 1024
#define CTRL_C 0x2e03
#define UP_ARROW 0x4800
#define DOWN_ARROW 0x5000
#define HOME_KEY 0x4700
#define END_KEY 0x4f00
#define ENTER_KEY 0x1c0d



// global constants
    const double c = 299792456.0;     //  meters per second 
    const double pi = 3.1415927 ;
    const double crad = 57.29578 ;

// other globals
    
    int lib_init = 1;		/* if lib_init, then we need to initialize
				   the library routines */
    int ph_init = 1;

    char *units = " mm.  ";

    float metric = 1.0;

    char *unit_type = "Metric ";
//






// start of ANTENNA.H - class declarations

class Antenna           // Abstract base class
{
public:
    Antenna();
    void helpscreen();
    void get_freq();
    void get_wg();
    void horn_dimensions();
    void horn_calcgain();
    void horn_phasecenters();
    void horn_angles();
    void banner(ostream&);
    void info_listing(ostream&);
    void post_print(ostream&);
    void PANFI_corr();
    void range_calc();
    int bad_input() {return bad;};
      
protected:
    double freq;      
    double H_wg;                // waveguide H dim. in mm. */ 
    double E_wg;                // waveguide E dim. in mm. */ 
    double wavelength;          // in mm */
    double axial_length;        // axial length of feed horn flare in mm */
    double H_aperture;          // horn E-Plane aperture in mm */ 
    double E_aperture;          // horn H-Plane aperture in mm */ 
    double horn_gain;       
    double E_phase_center;
    double H_phase_center;
    double E_flare_angle;       // angle from axis to E-side
    double H_flare_angle;       // angle from axis to H-side
    double E_side;
    double E_ang;
    double H_side;
    double H_ang;
    double aperture;
    double efficiency;
    double rayleigh_dist;
    double directivity;
    int bad;                    // problem with input
};


class Horn : public Antenna
{
public:
    Horn();
    void lookup();
    void simple_gain();
    void coords();
    void PS_template();
    void write_data(ostream&, int);
        
private:

    double simplegain;       
    Point inner[6];
    Point outer[6];

};
//







class Dish : public Antenna
{
public:
    Dish();
    void d_init();
    void illumination();
    void calc_gain();
    void phasecenters();
    void PS_template();
    
private:
                // all dimensions in mm.
    double freq;
    double diameter;                
    double depth;                   // at center of dish
    double focal_length;        
    double f_over_D;
    double feedangle;               // diameter subtended angle from focal point
    double feedang_deg;
    double R_edge;                  // distance from focal point to edge
    double space_attn;
    double desired_taper;
    double BW3;                     // 3 dB beamwidth
    double simple_horn_diameter;
    double dish_gain;                 
};

class Lens : public Antenna
{

public:
    Lens();
    void dimension();    
    void calculate();
    void phasecheck();
    void plates();
    void write_data(ostream &, int);
    void crude_graphics(ostream &);
    
private:

    double Lens_diam ;       /* Lens diameter in mm */
    double spacing   ;       /* metal plate spacing in mm */
    double width_increase ;  /* plates get wider toward edge */
    double shift[25];        /* H-plane phase compensation */
    int N ;                  /* number of plates in lens */
    double BW_E_horn ;           /* feed horn E-plane Beamwidth in degrees */
    double lens_focal_length ;   /* in mm */
    double Gain_lens ;           /* dB added by lens */
    double index ;               /* effective index of refraction */
    double lens_to_horn;        // horn mouth to lens curve center in mm.
    double step;                // step distance in zoned lens plate */
    int compensate ;            // flag for phase center compensation needed
};

// end of ANTENNA.H - class declarations

//






// start of ANTENNA.CPP - class member functions

  
Antenna::Antenna()              // Constructor
{
    freq = 0.0;      
    H_wg = 0.0; 
    E_wg = 0.0;
    wavelength = 0.0;
    freq = 0.0;        
    H_wg = 0.0;        
    E_wg = 0.0;        
    wavelength = 0.0;  
    horn_gain = 0.0;        
    axial_length = 0.0;
    H_aperture = 0.0;
    E_aperture = 0.0;   
    H_flare_angle = 0.0;
    E_flare_angle = 0.0;
    E_side = 0.0;
    E_ang = 0.0;
    H_side = 0.0;
    H_ang = 0.0;
    aperture = 0.0;
    efficiency = 0.0;
    rayleigh_dist = 0.0;
    directivity = 0.0;
    bad = 0;
}

void Antenna::banner(ostream& ostrm)
{  /* a banner */
        
    ostrm << "\n\n\n\n";
    ostrm << "             **************** \n";
    ostrm << "             *              * \n";
    ostrm << "             *    HDL_ANT   * \n";
    ostrm << "             *              * \n";
    ostrm << "             **************** \n";
    ostrm << "\n\n     copyright 1994 Paul Wade N1BWT \n\n";
    ostrm << "      Version 1.0E with option for the metric-impaired.\n\n";
    
    ostrm << "      Any licensed radio amateur may use this program "
          << "without \n";
    ostrm << "      charge; all other persons must send $73 to the \n";
    ostrm << "      ARRL Foundation, 225 Main St., Newington, CT 06111";
    ostrm << "\n\n";
}

void Antenna::info_listing(ostream& ostrm)
{

ostrm << "HDL_ANT does the calculations needed to successfully implement\n";
ostrm << "several microwave antennas: horns, parabolic dishes, and \n";
ostrm << "metal-plate lenses.  It also does the calculations involved in\n";
ostrm << "setting up an antenna range for antenna gain measurement.  More\n";
ostrm << "detailed explanations of the antennas and measurements may be\n";
ostrm << "found in the series of QEX articles entitled 'Practical Microwave\n";
ostrm << "Antennas,' in the September, October, and November 1994 issues.\n\n";

ostrm << "All dimensions are in millimeters, since one mm. is about the \n";
ostrm << "accuracy required for antennas to work well at 10 GHz.\n";
ostrm << "However, there is an option for dimensions in inches, for the\n";
ostrm << "metric-impaired.\n\n";

ostrm << "MENU CHOICES:\n\n";
ostrm << "  H\n\n";

ostrm << "For horn antennas, HDL_ANT will design an 'optimum' horn with \n";
ostrm << "a specified gain (between 10 and 25 dB) for any frequency - use \n";
ostrm << "menu entry 'H' for this option.  It will then create a PostScript\n";
ostrm << "template file which may be used to print a paper template for\n";
ostrm << "horn construction.  The paper template is attached to a sheet of\n";
ostrm << "copper or brass which is cut and folded on the template lines,\n";
ostrm << "then soldered together and soldered to a waveguide.\n\n";
ostrm << "See menu entry 'P' for more details on printing a "
      << "PostScript file.\n\n";

ostrm << "  E\n\n";

ostrm << "Menu entry 'E' is used to calculate the gain and other parameters\n";
ostrm << "for an existing horn - perhaps one you found at a hamfest.  It \n";
ostrm << "can also create a template, to duplicate a horn known to have\n";
ostrm << "good dimensions.\n\n";

ostrm << "  D\n\n";

ostrm << "Parabolic dish calculations are under menu entry 'D'.  The most\n";
ostrm << "important dish dimension is the focal length, and the easiest way\n";
ostrm << "to find it is to measure the depth of the dish in the center,\n";
ostrm << "measured from a straightedge across the rim of the dish.  HDL_ANT\n";
ostrm << "then calculates the focal length and f/D ratio, to allow\n";
ostrm << "selection of the best feed antenna - see the QEX series for\n";
ostrm << "details on feedhorn selection.  For smaller dishes, HDL_ANT can\n";
ostrm << "also generate a PostScript template file;  the printed template\n";
ostrm << "is used to check the accuracy of the parabolic curve of the dish.\n";
ostrm << "If it is not a good fit, sometimes a template for a slightly\n";
ostrm << "larger or smaller f/D ratio gives a better fit, since dishes\n";
ostrm << "sometimes have a flat area or large hole in the center which\n";
ostrm << "yields a misleading depth measurement.\n\n";

ostrm << "  L\n\n";

ostrm << "Menu entry 'L' is used to design metal-plate lens antennas.\n";
ostrm << "These are normally fed by a horn; if an appropriate horn is not\n";
ostrm << "already available, then the 'H' entry may be used to design the\n";
ostrm << "horn.  It may take a few trials to find a good combination of\n";
ostrm << "horn and lens.  Note that the 'optimum' horns designed under the\n";
ostrm << "'H' entry of the HDL_ANT program do not usually have the matched\n";
ostrm << "E-plane and H-plane phase centers needed for good lens\n";
ostrm << "performance; some adjustment of horn dimensions can improve the\n";
ostrm << "phase center matching.  The lens design does not create templates\n";
ostrm << "since the lens curves are all simple circles which can be drawn\n";
ostrm << "more accurately with a compass.\n\n";

ostrm << "  R\n\n";

ostrm << "Antenna range design is selected by menu entry 'R'.  HDL_ANT\n";
ostrm << "calculates the minimum length and measurement height required for\n";
ostrm << "a specified maximum antenna aperture, and then calculates the\n";
ostrm << "height of the source antenna needed to have the RF field peak at\n";
ostrm << "the measurement height.\n\n";

ostrm << "  C\n\n";

ostrm << "If a noise figure meter is used to measure antenna gain as\n";
ostrm << "described in the QEX articles, then it is necessary to convert\n";
ostrm << "noise figure readings into antenna gain.  Menu entry 'C' makes\n";
ostrm << "these calculations.\n\n";

ostrm << "  P\n\n";

ostrm << "Menu entry 'P' is a short explanation of how to print PostScript\n";
ostrm << "files.\n\n";

ostrm << "  I\n\n";

ostrm << "Menu entry 'I' is this summary of information about HDL_ANT.\n\n";

ostrm << "  U\n\n";

ostrm << "Menu entry 'U' allows you to select dimensions in either\n" 
      << "millimeters or inches.  HDL_ANT defaults to millimeters.\n\n";

ostrm << "  Q\n\n";

ostrm << "'Q' for Quit ends the program.\n\n\n";


ostrm << "The source file, HDL_ANT.CPP, was compiled using Borland C++ \n";
ostrm << "version 3.1.  Any part of it may be modified or used as part\n";
ostrm << "of another program by any amateur radio operator, provided\n";
ostrm << "that credit is given and provided there is no charge for\n";
ostrm << "its use.\n\n";

ostrm << "Send problems, suggestions, and comments to Paul Wade, N1BWT.\n";
ostrm << "Expect support commensurate with the cost of the program!\n";
}

void Antenna::post_print(ostream& ostrm)
{
ostrm << "\n            PRINTING POSTSCRIPT[tm] FILES\n\n";
        
ostrm << "      The easiest way to print PostScript files is with a \n";
ostrm << "      PostScript compatible laser printer.  These have become\n";
ostrm << "      more affordable and are becoming more common; for\n";
ostrm << "      instance, the public library in my small town has one\n";
ostrm << "      attached to a public-access computer.   However, they are\n";
ostrm << "      still roughly twice as expensive as the dot-matrix\n";
ostrm << "      printers that most of us use with our personal computers.\n";
ostrm << "      \n";
ostrm << "      An alternative to a laser printer is software that\n";
ostrm << "      interprets PostScript language commands for display on a\n";
ostrm << "      computer VGA display or a dot-matrix printer.  I know of\n";
ostrm << "      several versions of this type of software:  GoScript, a\n";
ostrm << "      commercial product, Ultrascript, a commercial product,\n";
ostrm << "      Freedom of Press , a commercial product, and Ghostscript,\n";
ostrm << "      [Copyright (C) 1990, 1992 Aladdin Enterprises.  All\n";
ostrm << "      rights reserved.  Distributed by Free Software\n";
ostrm << "      Foundation, Inc.], which is freeware.  \n";
ostrm << "      \n";
ostrm << "      I have only used Ghostscript, version 2.5.  While 286,\n";
ostrm << "      386, and windows versions are available, the 286 version\n";
ostrm << "      seems to work most reliably even on a 386 or 486 PC.  It\n";
ostrm << "      uses Unix style command strings which are difficult to\n";
ostrm << "      remember, so I've included two BAT files to help:\n";
ostrm << "      GS_VIEW.BAT for viewing on a screen, and GS_PRINT.BAT for\n";
ostrm << "      printing on an Epson dot-matrix printers.  For other\n";
ostrm << "      brands of printer, the command will have to be changed\n";
ostrm << "      appropriately, which will require reading of the\n";
ostrm << "      documentation.  Type GS_VIEW <filename.ps> or GS_PRINT\n";
ostrm << "      <filename.ps> to use them.  Be sure to type QUIT when you\n";
ostrm << "      are through or your PC may be left in an unhappy state\n";
ostrm << "      requiring rebooting.  \n";
ostrm << "      \n";
ostrm << "      I've also included a sample PostScript file, SQUARE.PS,\n";
ostrm << "      which draws a four inch square to make sure that\n";
ostrm << "      templates will be drawn to scale, and a sample horn\n";
ostrm << "      template, HORN18.PS, to get you started.  If the\n";
ostrm << "      dimensions of the printed square are slightly off, you\n";
ostrm << "      can correct them.  Each template has a line near the\n";
ostrm << "      beginning of the file:\n";
ostrm << "      \n";
ostrm << "              1.0 1.0 scale\n";
ostrm << "              \n";
ostrm << "      the first number is the scale factor in the x\n";
ostrm << "      (horizontal) direction, and the second is the scale\n";
ostrm << "      factor in the y (vertical) direction.  Edit the SQUARE.PS\n";
ostrm << "      file with an editor to change these numbers slightly;\n";
ostrm << "      when you find a combination that prints a square exactly\n";
ostrm << "      four inches on a side, then you have compensated for your\n";
ostrm << "      printer.  Edit these same numbers into any template to be\n";
ostrm << "      printed on the same printer and the dimensions will come\n";
ostrm << "      out right.\n";
ostrm << "      \n";
ostrm << "      The Ghostscript files are available on many bulletin\n";
ostrm << "      boards and Internet locations.  They are in ZIP format,\n";
ostrm << "      so they must me downloaded, unZIPped, and installed\n";
ostrm << "      according to the README documentation.\n";
ostrm << "      \n";
ostrm << "      I have not used any of the commercial products, but I\n";
ostrm << "      would expect a commercial product to be much easier to\n";
ostrm << "      install and use than freeware or shareware.   \n";
ostrm << "      \n";
ostrm << "      The batch files are as follows:\n\n";
ostrm << "GS_VIEW.BAT\n\n";
ostrm << "   gs %1\n\n";
ostrm << "GS_PRINT.BAT\n\n";
ostrm << "   gs -sDEVICE=epson -r60x60 %1\n";
}

void Antenna::PANFI_corr()
{
// correction for PANFI readings to Antenna Gain

    float Tex_dB;  // Excess noise calibration

    cout << "\nPANFI calibration setting - Excess noise in dB: " ;
    cout.flush();
    cin >> Tex_dB;

    float std_db;
    cout << "\nGain of standard gain antenna: " ;
    cout.flush();
    cin >> std_db;
    cout << "\n\n";

    double nf = 0.0;   // indicated noise figure in dB

    cout << "Enter a negative Noise Figure to return to Main Menu\n\n\n";

    while (nf >= 0.0)
    {
        double std_nf;
        cout << "\nIndicated Noise Figure for Standard gain antenna: " ;
	cout.flush();
	cin >> std_nf ;

        double ratio = pow(10.0,(0.1 * (Tex_dB - std_nf)));
        double Y_std = 10.0 * log10( 1.0 + ratio);
        cout << setprecision(2) 
	     << "\n            Y factor = " << Y_std <<  " dB\n\n";

        cout << "\nIndicated Noise Figure for antenna under test: " ;
	cout.flush();
	cin >> nf ;

        ratio = pow(10.0,(0.1 * (Tex_dB - nf)));
        double Y_db = 10.0 * log10( 1.0 + ratio);

        cout << setprecision(2) 
	     << "\n           Y factor = " << Y_db <<  " dB\n\n";


	double G_db = Y_db - Y_std + std_db;
	cout << setprecision(2)
	     << "      Corrected gain = " << G_db <<  " dBi\n\n";

	float dia;
	cout << "Aperture diameter in " << units << ": " ;
	cout.flush();
	cin >> dia ;
        dia *= metric;

        double g_ratio = pow(10.0,(0.1 * G_db));

        directivity = pi * pi * dia * dia /( wavelength * wavelength);

//cout << "Directivity = " << directivity;

        efficiency = g_ratio / directivity;
                
        cout << setprecision(2) 
             << "\n\n      Aperture efficiency = " << (efficiency * 100) 
             <<  " %\n\n\n";        
    }
}


void Antenna::range_calc()
{
// calculations for Antenna Range design
// this routine returns feet or meters so has hard constants

    cout << "\nLargest aperture diameter to be measured, in "
         << units << ": ";
    cout.flush();
    cin >> aperture;
    
    aperture *= metric;

    rayleigh_dist = 2.0 * aperture * aperture / wavelength;

    float big_u;
    char *big_units = "xxxxxx";

    if (metric == 1.0)
    {
        big_u = 1000.0;
        big_units = "meters";
    }
    else
    {
        big_u = 304.8;
        big_units = "feet  ";
    }
        
     cout << "\n\nRayleigh distance (minimum range length) = "
          << setprecision(2) << (rayleigh_dist / big_u) << " "
          << big_units << "\n\n";

     cout << "Suggested measurement height = "
          << setprecision(2) << (aperture * 4.0 / big_u) << " "
          << big_units << "\n\n";

    double range_length;
    cout << "Enter desired range length in " << big_units << ": ";
    cout.flush();
    cin  >> range_length;
    
    range_length *= big_u;      // mm.
    
    if (range_length < rayleigh_dist)
        cout << "\n\nWARNING - range too short for "
             << "accurate gain measurement\n\n";

        double meas_height;
        cout << "\n\nEnter desired measurement height in "
             << big_units << ": ";
        cout.flush();
        cin  >> meas_height;
             
        meas_height *= big_u;      // mm.
    
    if (meas_height < (3.2 * aperture))
        cout << "\n\nWARNING - measurement height insufficient for "
             << "accurate gain measurement\n\n";

    double source_height = wavelength * range_length / (4.0 * meas_height);
    
    cout << "\n\nHeight of source antenna should be "
         << setprecision(2) << (source_height / metric) << " "
         << units << " \n\n";
}


//




Dish::Dish() : Antenna()
{               // constructor 
    freq = 0.0;                 
    diameter = 0.0;             
    depth = 0.0;                
    focal_length = 0.0;         
    f_over_D = 0.0;             
    feedangle = 0.0;            
    feedang_deg = 0.0;          
    R_edge = 0.0;                    
    space_attn = 0.0;           
    desired_taper = 0.0;        
    BW3 = 0.0;                  
    simple_horn_diameter = 0.0; 
    wavelength = 0.0;           
    dish_gain = 0.0;                 
    
}

void Dish::d_init()
{
    cout << "\nDiameter of dish in " << units << ": " ;
    cout.flush();
    cin >> diameter ;
    diameter *= metric;   //mm

    char mode = 'n';
    cout << "\nDo you know the f/D ratio [Yes or No]?  ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y')
    {
        cout << " \n Enter f/D ratio: ";
	cout.flush();
	cin >> f_over_D;

	focal_length = f_over_D * diameter ;
    }
    else
    {
	cout << " \n Enter Depth of dish in " << units << ": " ;
	cout.flush();
	cin >> depth;
        depth *= metric;      //mm

	focal_length = (diameter * diameter) / ( 16.0 * depth);
	f_over_D = focal_length / diameter ;

	cout << "\n\n     f/D = " << setprecision(2) << f_over_D << "\n" ;
    }

    cout << "\nFocal length = "
         << setprecision(2) <<  (focal_length / metric) 
         << " " << units << endl;

}

void Dish::illumination()
{
	feedangle = 2 * atan2(1.0,((2.0 * f_over_D) - (1.0/(8.0 * f_over_D))));
	feedang_deg = crad * feedangle ;   // degrees conversion

		// R_edge = distance from focal point to edge

	R_edge = 2.0 * focal_length / ( 1 + cos(feedangle/2.0));

		// Space_attn is additional path loss to edge of dish
	double Space_attn = (20.0 * log10(R_edge / focal_length));

		// Desired_taper to achieve 10 dB actual edge taper
	double Desired_taper = 10.0 - Space_attn;  // dB

	BW3 = feedangle * sqrt( 3.0 / Desired_taper) ;

	double Simple_horn_diameter = 66.0 / (BW3 * crad) ; // wavelengths

	cout << "\n\n  Illumination angle for feed = "
	     << setprecision(2) <<  feedang_deg << " degrees";

	cout << "\n  Space attenuation = "
	     << setprecision(2) << Space_attn << " dB ";
	cout << "\n  Desired taper = "
	     << setprecision(2) << Desired_taper << " db "
	     << "for 10 dB edge illumination";

	cout << "\n\nA simple feed horn would have a diameter of "
	     << setprecision(2) << Simple_horn_diameter << " wavelengths";

	cout << "\n   for a 3 dB beamwidth of "
	     << setprecision(2) << (BW3 * crad) << " degrees\n";


//        Write_PS(diameter, focal_length);

}

void Dish::calc_gain()
{
    efficiency = 0.5;     // assume 50% efficiency

    double radius = 0.5 * diameter;

    aperture = pi * radius * radius;

    dish_gain = efficiency * aperture * 4.0 * pi / (wavelength * wavelength);

    dish_gain = 10.0 * log10(dish_gain);

    cout << "\nGain at 50% efficiency = " << setprecision(2) << dish_gain
	 << " dBi \n";
}


void Dish::PS_template()
{                      // PostScript template on one page

    char descriptor[LINESIZE] = " ";
    char outname[LINESIZE];

    cin.ignore(LINESIZE,'\n');
    cout << " Dish description line: ";
    cout.flush();
    cin.get(descriptor,LINESIZE,'\n');

    cout << "File name for dish template (should be .PS ): ";
    cout.flush();
    cin >> outname ;

    ofstream outfil(outname);

    if (!outfil)
    {
	cerr << "Cannot open output file for output";
    }

// header

    outfil << "%! PostScript\n";

    outfil << "% template for " << (diameter/metric) 
           << " " << units << " parabolic dish\n";
    outfil << "% with f/d = " << f_over_D << " and focal length = "
           << (focal_length/metric) << " " << units << "\n";
    
    outfil << "% generated by HDL_ANT by N1BWT 1994 \n";
    outfil << "%\n";
    outfil << "%" << descriptor;
    outfil << "%\n";
    outfil << "% Print on PostScript printer\n";
    outfil << "% cut along the curve,\n";
    outfil << "% and use it as a template for the dish.\n\n\n";
    
    outfil << "%\n";
    outfil << "/in { 72 mul } def\n";
    outfil << "/mm { 2.834646 mul } def\n";

    outfil << "%\n";
    outfil << "% 100% scaling factors - change for printer correction\n";
    outfil << "1.0 1.0 scale \n";
    outfil << "%\n";

outfil << "% DISH **********************************************\n\n";

//    Point offset =  Point(50.0,(100.0 - (diameter/4.0))) ;
    Point offset =  Point(50.0, 260.0);

    outfil << offset.x() << " mm " << offset.y() << " mm translate" << endl;

    outfil << "% DISH\n";
outfil << "gsave\n";

// and dish outline 

// NOTE: I'm doing this directly in picas, so can't use PS_lineto
        
    int prad = int(2.834636 * diameter / 2.0);         // radius in picas 
    double pa = 4.0 * focal_length * 2.834636;       // 4 * f in picas 
        
    outfil << "newpath\n";

    outfil << PS_moveto() << endl;
        
    double i_d;    
    double curvature;
    for ( int i = 0; i <= prad; i++)
    {
        i_d = (double)i;
        curvature = i_d * i_d / pa ;
        outfil << curvature << " " << (-i) << " lineto\n";   // draw it vertically
    }
    outfil << "stroke \n\n";
            
// and draw a box around it 

    outfil << "newpath\n";
    outfil << curvature << " " << (-prad) << " moveto" << endl;
    outfil << curvature << " 0 lineto " << endl;
    outfil << "0 0 lineto " << endl;
    outfil << "0 " << (-prad) << " lineto" << endl;
    outfil << curvature << " " << (-prad) << " lineto" << endl;
    outfil << "stroke\n";    

// Text
    outfil << "/Helvetica-Bold findfont\n";
    outfil << "14 scalefont\n";
    outfil << "setfont\n";
// position title

    outfil << "-25 mm -25 mm moveto\n";
    outfil << "(Template for " << diameter << "mm dish with f/d = " 
           << f_over_D << " ) show\n";
    outfil << "-25 mm  -35 mm moveto\n";
    outfil << " (N1BWT 1994) show \n";


    outfil << "% END DISH **********************************************\n";
    outfil << "grestore\n";

    outfil << "showpage\n";
    outfil << "%\n";

    outfil.close();
//cerr << "outfile closed";
}
 


//






Horn::Horn() : Antenna()
{               // constructor 
    freq = 0;        
    H_wg = 0;        
    E_wg = 0;        
    wavelength = 0;  
    horn_gain = 0;        
    axial_length = 0;
    H_aperture = 0;
    E_aperture = 0;   
    E_phase_center = 0;
    H_phase_center = 0;
    simplegain = 0;        
    E_flare_angle = 0;
    E_side = 0;
    E_ang = 0;
    H_flare_angle = 0;
    H_side = 0;
    H_ang = 0;
}
            

void Antenna::get_freq()
{                   // reads initial data
    cout << "\n" << "Frequency in MHz: " ;
    cout.flush();
    cin >> freq ;

    wavelength = c / (1000.0 * freq);
}

void Antenna::get_wg()
{
    cout << "         ____________     \n";
    cout << "        |     E      |   waveguide  \n";
    cout << "        |     ^ -->H |             Hint: for WR-90\n";
    cout << "        |     |      |               H = 22.86 mm. = 0.9 in.,\n";
    cout << "         ------------                E = 10.16 mm. = 0.4 in. \n\n";

    bad = 1 ;
    while (bad >= 1)
    {    
        cout << "\n" << "Enter H-plane inside dimension of waveguide in "
             << units << ": ";
	cout.flush();
	cin >> H_wg;
        H_wg *= metric;         //mm

        cout << "\n" << "Enter E-plane inside dimension of waveguide in "
             << units << ": ";
	cout.flush();
	cin >> E_wg;
        E_wg *= metric;         //mm
    
	if (wavelength < (0.98 * H_wg) || wavelength > ( 1.72 * H_wg ))
                        /* slight fudge to get edges */
        {
            cout << " ERROR - frequency out of waveguide range \n";
            bad++ ;
            if (bad > 3) break;
        }
        else bad =0;
    }
}

void Antenna::horn_dimensions()
{                               // input dimensions of a horn
        
    cout << "\n" << "ENTER DESIRED PHYSICAL DIMENSIONS OF HORN: ";
    

    cout << "\n" << "Enter axial length of horn in "
         << units << ": ";
    cout.flush();
    cin >> axial_length;
    axial_length *= metric;
    
    cout << "\n" << "Enter H-plane aperture of horn in "
         << units << ": ";
    cout.flush();
    cin >> H_aperture;
    H_aperture *= metric;
    
    cout << "\n" << "Enter E-plane aperture of horn in "
         << units << ": ";
    cout.flush();
    cin >> E_aperture;
    E_aperture *= metric;
}        

void Horn::lookup()
{

//   Lookup table based on 
//    D.E. Cozzens, "Tables Ease Horn Design," _Microwaves_, March 1966, p37.
//   from which I eyeballed nominal values;
//   anyway, the program calculates a new gain later 
         
    float G[ 26];
    
    for (int i = 0; i < 10; i++)
        G[i] = 0;
        
    G[10] = 0.080;
    G[11] = 0.24;
    G[12] = 0.4;
    G[13] = 0.6;
    G[14] = 0.88;
    G[15] = 1.25;
    G[16] = 1.7;
    G[17] = 2.25;
    G[18] = 3.0;
    G[19] = 4.0;
    G[20] = 5.2;
    G[21] = 6.7;
    G[22] = 8.7;
    G[23] = 11.2;
    G[24] = 14.3;
    G[25] = 18.3;

    bad = 1;
    
    double gain;    

    while (bad)
    {
        cout << "\n" << "Enter desired gain of horn in dB: ";
	cout.flush();
	cin >> gain;

        if ((gain < 10.0) || (gain > 25.0))
            cout << "Gain must be between 10 and 25 dB";
        else bad = 0;
    }        

    axial_length = wavelength * G[int(gain)];

// {need gain as a ratio to find horn apertures }
// {**** NOTE y=z**x -> y:=exp(x*ln(z)) ****}

    double gain_ratio = exp(0.2302585 * (int(gain)));            

    H_aperture = wavelength * 0.4675 * sqrt(gain_ratio);

    E_aperture = wavelength * 0.3463 * sqrt(gain_ratio);

    cout << "\n" << " CALCULATED HORN DIMENSIONS: \n";   
    
    cout << "\n" << "   Axial length of horn is "
         << setprecision(2) << (axial_length/metric) << " "
	 << units;
    cout << "\n" << "   H-plane aperture of horn is "
	 << setprecision(2) << (H_aperture/metric) << " "
	 << units;
    cout << "\n" << "   E-plane aperture of horn is "
	 << setprecision(2) << (E_aperture/metric) << " "
	 << units;
}


void Horn::simple_gain()
{                 // temp - simple formula from Kraus

    simplegain = 4.5 * (H_aperture/wavelength) * (E_aperture/wavelength);

    simplegain = 10.0 * log10(simplegain) + 2.14 ;   //{ dBi }
            
//    cout << " Simple gain of horn is "
//         << setprecision(2) << simplegain << " dBi \n";
}            

double Le(double s)
{
//    MathCad fit by Matt Reilly of Fig. 23 from Balanis

//    input is Maximum input phase error in wavelengths
//    returns loss due to phase error in dB.

//	Le(s) = sum(from i=1 to 10) Xle[i] * s^i

    if ( s < 0 || s > 1)
    {
        cerr << "ERROR: excessive phase error in Le\n\n";
        return 1;
    }

    double Xle[11];

// Xle[i] = 
    Xle[1] =   10.5075396618;
    Xle[2] =  -236.610713851;
    Xle[3] =   2603.14290758;
    Xle[4] =  -15318.8133545;
    Xle[5] =   55318.7209697;
    Xle[6] =  -125471.932662;
    Xle[7] =   178426.752358;
    Xle[8] =  -153811.177005;
    Xle[9] =   73233.5757222;
    Xle[10] =  -14743.1657614;

    double Le = 0;

    for (int i = 1; i < 11; i++)
    {
	Le += Xle[i] * pow(s,i);
    }
    return Le;
}

double Lh(double t)
{
//    MathCad fit by Matt Reilly of Fig. 23 from Balanis

//    input is Maximum input phase error in wavelengths
//    returns loss due to phase error in dB.

//	Lh(t) = sum(from i=1 to 10) Xlh[i] * t^i

    if ( t < 0 || t > 1)
    {
        cerr << "ERROR: excessive phase error in Lh\n\n";
        return 1;
    }

    double Xlh[11];

// Xlh[i] =
    Xlh[1] =   -13.9134920465;
    Xlh[2] =      398.4347217;
    Xlh[3] =   -4241.37951372;
    Xlh[4] =    24010.7335428;
    Xlh[5] =    -79636.863311;
    Xlh[6] =    162957.754379;
    Xlh[7] =   -208325.065791;
    Xlh[8] =    162037.036743;
    Xlh[9] =   -70133.3772858;
    Xlh[10] =     12951.940007;

    double Lh = 0;

    for (int i = 1; i < 11; i++)
    {
        Lh += Xlh[i] * pow(t,i);
    }
    return Lh;
}

double phase_error(double aperture, double flare_angle, double wavelength)
{
    double rho = 0.5 * aperture / sin(flare_angle);
//cout << setprecision(4) << "\n aperture = " << aperture
//     << " flare angle = " << flare_angle
//     << " rho =  " << rho ;   
    double error = aperture * aperture / ( 8.0 * wavelength * rho );
    
    return error;
}

void Antenna::horn_calcgain()
{
//improved algorithm from
// Balanis, C.A., "Horn Antennas", Chapter 8 in 
// Lo, Y.T. and Lee, S.W.
// Antenna Handbook: Theory, Applications and Design, Van Nostrand, 1988
// pp 8-39 to 8-42.


    horn_gain = 10.0 * ( 1.008 + 
                 log10( E_aperture * H_aperture / (wavelength * wavelength)));


// correct for phase error


    double s = phase_error(E_aperture, H_flare_angle, wavelength);
//cout << setprecision(4) << "\n s = " << s << "  Le(s) = " << (Le(s));

    double t = phase_error(H_aperture, E_flare_angle, wavelength);
//cout << setprecision(4) << "\n t = " << t << "  Lh(t) = " << (Lh(t)) << endl;

    horn_gain -= (Le(s) + Lh(t));               // dBi

//    cout << " Improved gain of horn is "
//         << setprecision(2) << horn_gain << " dBi \n";

}


void Horn::write_data(ostream& ostrm, int interactive)
{
    // anti warning hack.
    int i, j;
    for(i = j = 0; i < 10; i++) j = j + interactive;

    ostrm << " \nSimple gain of horn is "
	  << setprecision(2) << simplegain << " dBi \n\n";

    ostrm << " Improved gain of horn is "
	  << setprecision(2) << horn_gain << " dBi \n\n";

    ostrm << "H-Plane phase center is "
         << setprecision(2) << H_phase_center
         << " wavelengths inside horn mouth\n\n"; 
    ostrm << "E-Plane phase center is "
	  << setprecision(2) << E_phase_center
	  << " wavelengths inside horn mouth\n";
}

void Antenna::horn_angles()
{                
// note definition of E_flare_angle is the angle that the E side is 
// flared at, which is the flare angle in the H plane

    E_flare_angle = atan2((0.5 * (H_aperture - H_wg)) , axial_length);
    E_side = axial_length / cos(E_flare_angle);
    E_ang = atan2((0.5 * (E_aperture - E_wg)) , E_side);

    H_flare_angle = atan2((0.5 * (E_aperture - E_wg)) , axial_length);
    H_side = axial_length / cos(H_flare_angle);
    H_ang = atan2((0.5 * (H_aperture - H_wg)) , H_side);

// test

//    cout << setprecision(4) 
//         << "Flare angles " << E_flare_angle << "   " << H_flare_angle << "\n";
//    cout << setprecision(4) 
//         <<  "Side lengths" << E_side << "   " << H_side << "\n";
//    cout << setprecision(4) 
//         << "Angles " << E_ang << "   " << H_ang << "\n";
}


void Horn::coords()
{
// TEST
//    cout << " ENTERING fixed Horn::coords()" << endl;

    double fold_ang = E_ang + H_ang;

    inner[1] = inner[0] + Point(E_wg,0);

    inner[2] = inner[1] + Point((H_wg * cos(fold_ang)),-(H_wg * sin(fold_ang)));

    inner[3] = inner[2] + Point((E_wg * cos(2 * fold_ang)),
                                -(E_wg * sin(2 * fold_ang)));
                           
    inner[4] = inner[3] + Point((H_wg * cos(3 * fold_ang)),
                                -(H_wg * sin(3 * fold_ang)));

    outer[0] += Point(-(0.5 * (E_aperture - E_wg)),E_side);

    outer[1] = outer[0] + Point(E_aperture,0);

    outer[2] = outer[1] + Point((H_aperture * cos(fold_ang)),
				-(H_aperture * sin(fold_ang)));

    outer[3] = outer[2] + Point((E_aperture * cos(2 * fold_ang)),
				-(E_aperture * sin(2 * fold_ang)));

    outer[4] = outer[3] + Point((H_aperture * cos(3 * fold_ang)),
				-(H_aperture * sin(3 * fold_ang)));

	// and a solder flap


    inner[5] = inner[4] + Point((7 * cos(3*fold_ang - 0.7854 + H_ang)),
			       (-(7 * sin(3*fold_ang - 0.7854 + H_ang))));

    outer[5] = outer[4] + Point((7 * cos(3*fold_ang + 0.7854 + H_ang)),
                                (-(7 * sin(3*fold_ang + 0.7854 + H_ang))));



//%t   cout << "H_angle = " << H_ang << endl;
    
//%t   cout << "fold_angle = " << fold_ang << endl;
    
//%t   Point in5_pt = Point((7 * cos(3*fold_ang - 0.7854 + H_ang)),
//			       (-(7 * cos(3*fold_ang - 0.7854 + H_ang))));

//%t   cout << "inner_5 increment = " << in5_pt << endl;

//%t   Point out5_pt = Point((7 * cos(3*fold_ang + 0.7854 + H_ang)),
//				(-(7 * cos(3*fold_ang + 0.7854 + H_ang))));

//%t   cout << "outer_5 increment = " << out5_pt << endl;

}
//






void Horn::PS_template()
{                      // PostScript template on one page
                       // or two pages for larger horns
                       
    char descriptor[LINESIZE] = " ";
    char outname[LINESIZE];

    cin.ignore(LINESIZE,'\n');
    cout << " Horn description line: ";
    cout.flush();
    cin.get(descriptor,LINESIZE,'\n');

    cout << "File name for horn template (should be .PS ): ";
    cout.flush();
    cin >> outname ;

    ofstream outfil(outname);

    if (!outfil) 
    {
        cerr << "Cannot open output file for output";
    }
    
    int pages = 2;
    
    Point offset;

    if ((outer[0].y() - outer[4].y()) < 260)         // horn fits on page 
    {
        pages = 1;
        if (outer[4].x() < outer[0].x())
            offset = Point(-outer[4].x(), -outer[0].y());
        else offset = Point(-outer[0].x(), -outer[0].y());
    }
    else offset = Point(-outer[0].x(), -outer[0].y());

    offset =  Point(25,254) + offset;
            
    
//      PostScript header 

    outfil << "%! PostScript \n";
    outfil << "/mm { 2.834646 mul } def\n";
    outfil << "/in { 72 mul } def\n";

    outfil << "%\n";
    outfil << "% 100% scaling factors - change for printer correction\n";
    outfil << "1.0 1.0 scale \n";
    outfil << "%\n";

    outfil << setprecision(2);
    outfil << setprecision(2)
           << "% Template for " << horn_gain << " dBi pyramidal horn for" 
           << freq << " MHz" << endl;
    outfil << "% generated by HDL_ANT by N1BWT 1994 " << endl;
    outfil << "%" << endl;
    outfil << "%" << descriptor;
    outfil << "%" << endl;
    outfil << "% Print on PostScript printer" << endl;
    outfil << "% stick to flashing copper";
    outfil << "% and cut out pieces." << endl;
    outfil << "% Then fold up and solder horn";
    outfil << "% then solder it to waveguide flange." << endl;
    outfil << "% Waveguide size is " << (H_wg/metric) << " "
           << units << " x " << (E_wg/metric) << " " << units << "\n";
    outfil << "%" << endl;
    outfil << "%" << endl;
    
    outfil << "gsave" << endl;
    outfil << "% HORN **********************************************" << endl;
    outfil << "%" << endl;
    
    outfil << offset.x() << " mm " << offset.y() << " mm translate" << endl;
    
    outfil << "%" << endl;
    outfil << "%" << endl;
    outfil << "% HORN" << endl;
    outfil << "%" << endl;

// Text

    outfil << "/Helvetica-Bold findfont" << endl;
    outfil << "14 scalefont" << endl;
    outfil << "setfont" << endl;

    outfil << (outer[0].x() + 10) << " mm "
           << (outer[1].y() + 12) << " mm moveto" << endl;

    outfil << "(Template for " << horn_gain << " dBi horn for "
	   <<  int(freq) << " MHz) show" << endl;

    outfil << "-10.0 mm " << (outer[1].y() - 7) << " mm moveto" << endl;

    outfil << "(E-plane) show" << endl;
    outfil << "-10.0 mm " << (outer[1].y() - 14) << " mm moveto" << endl;

    outfil << " (N1BWT 1994) show " << endl;

// and horn outline for single page

    if (pages == 1)
    {
        outfil << "newpath" << endl;
        outfil << PS_moveto() << "\n";
            
        for (int i = 0; i <= 4; i++)
            outfil << PS_lineto(outer[i]) << "\n";

        for ( i = 4; i >= 0; i--)
            outfil << PS_lineto(inner[i]) << "\n";

        outfil << "stroke" << endl;

        outfil << "%" << endl;

// and fold lines 

        outfil << "% fold lines" << endl;


        for ( i = 0; i <= 5; i++)
        {
            outfil << "newpath" << endl;
            outfil << "[10 10] 0 setdash\n" ;
            outfil << PS_moveto(inner[i]) << "\n";
            outfil << PS_lineto(outer[i]) << "\n";
            outfil << "stroke" << endl;
        }

        outfil << "% finish solder flap" << endl;

        outfil << "newpath" << endl;
        outfil << "[10 10] 0 setdash\n" ;
        outfil << PS_moveto(inner[4]) << "\n";
        outfil << PS_lineto(inner[5]) << "\n";
        outfil << "stroke" << endl;

        outfil << "newpath" << endl;
        outfil << "[10 10] 0 setdash\n" ;
        outfil << PS_moveto(outer[4]) << "\n";
        outfil << PS_lineto(outer[5]) << "\n";
        outfil << "stroke" << endl;

        outfil << "% END HORN ***************************************" << endl;
        outfil << "grestore" << endl;

        outfil << "showpage" << endl;

    }
    
    else        // two pages
    {

// E-plane side: coordinates same as single page

outfil << "% E-plane side of HORN ***************************************\n";


        outfil << "newpath" << endl;
        outfil << PS_moveto() << "\n";
            
        for (int i = 0; i <= 1; i++)
            outfil << PS_lineto(outer[i]) << "\n";

        for ( i = 1; i >= 0; i--)
            outfil << PS_lineto(inner[i]) << "\n";

        outfil << "stroke" << endl;

        outfil << "%" << endl;
    
        outfil << "% END E-plane side of HORN ****************************\n";
        outfil << "grestore\n";

        outfil << "showpage\n";
        outfil << "%\n";

// H-plane side: new coordinates

        outfil << "gsave" << endl;
outfil << "% H-plane side of HORN ***************************************\n";

// center large aperture as well as we can


        if (H_aperture > 190)
            offset = Point((0.5 * (215.0 - H_aperture) - outer[0].x()),
                            (254 - outer[0].y()));
                            
        outfil << "%" << endl;
    
    outfil << offset.x() << " mm " << offset.y() << " mm translate" << endl;
    
        outfil << "%" << endl;

        inner[1] = inner[0] + Point(H_wg,0);

        outer[0] = Point(-(0.5 * (H_aperture - H_wg)),H_side);

        outer[1] = outer[0] + Point(H_aperture,0);

        outfil << "newpath" << endl;
        outfil << PS_moveto() << "\n";
            
        for ( i = 0; i <= 1; i++)
            outfil << PS_lineto(outer[i]) << "\n";

        for ( i = 1; i >= 0; i--)
            outfil << PS_lineto(inner[i]) << "\n";

        outfil << "stroke" << endl;

        outfil << "%" << endl;

        outfil << "% END E-plane side of HORN ****************************\n";


// text for H-plane side

        outfil << "/Helvetica-Bold findfont" << endl;
        outfil << "14 scalefont" << endl;
        outfil << "setfont" << endl;
    
        outfil << (outer[0].x() + 10) << " mm "
               << (outer[1].y() + 12) << " mm moveto" << endl;
    
        outfil << "(Template for " << horn_gain << " dBi horn for "
               <<  int(freq) << " MHz) show" << endl;
    
        outfil << "-10.0 mm " << (outer[1].y() - 7) << " mm moveto" << endl;
    
        outfil << "(H-plane) show" << endl;
        outfil << "-10.0 mm " << (outer[1].y() - 14) << " mm moveto" << endl;
    
        outfil << " (N1BWT 1994) show " << endl;

        outfil << "grestore\n";
        outfil << "showpage\n";
        outfil << "%\n";
        
        outfil.close();
    }
}    


//






//* predeclare entry points for phase center routines */
    double Phase_center(char, float, float, float, float);
    double H_Phase_Center(double, double, double, double&, double&);
    double E_Phase_Center(double, double, double, double&, double&);
    double fresnel_sin(double, double&, double&);
    double fresnel_cos(double, double&, double&);


void Antenna::horn_phasecenters()
{

/* get the phase centers and decide what to do about them */

    E_phase_center = Phase_center('E', E_aperture, E_wg, 
                                    wavelength, axial_length);
    H_phase_center = Phase_center('H', H_aperture, H_wg, 
                                    wavelength, axial_length);

//    cout << "E-Plane phase center is "
//	 << setprecision(2) << E_phase_center
//	 << " wavelengths inside horn mouth\n";
//    cout << "H-Plane phase center is "
//         << setprecision(2) << H_phase_center
//         << " wavelengths inside horn mouth\n\n"; 

}

double Pi, Pi2, Pi2sq;     // /* precomputed values for Pi and Pi/2

#define	ERRMARGIN	2.0E-3
#define	MAX(a,b)	(a > b ? a : b)
#define	MIN(a,b)	(a < b ? a : b)


double Phase_center(char plane, float aperture, float guide, 
                    float wavelength, float Horn_length)
//    /* convert to wavelengths for phase center routine */
//    char plane ;        /* E or H plane */
//    double aperture ;   /* aperture dimension in mm */
//    double guide ;      /* waveguide dimension in mm */
    
{
    double side_length ;    /* length of horn side in wavelengths */
    double Ap_lambda ;      /* aperture in wavelengths */
    double v ;              /* sqrt(side_length/2.0) */
    double dmin, dmax ;     /* limits check on phase center */
    double PC ;             /* phase center in wavelengths */

    Ap_lambda = aperture / wavelength ;
    side_length = sqrt(Horn_length*Horn_length +
			 ((aperture - guide)/2.0)*((aperture - guide)/2.0));
    side_length = side_length / wavelength ;
    v = sqrt(side_length/2.0);


    if (plane == 'E')
        PC = E_Phase_Center( Ap_lambda, v, side_length, dmin, dmax);
    else 
        PC = H_Phase_Center( Ap_lambda, v, side_length, dmin, dmax);

/* test for bad phase center */

    if ( fabs(dmax - dmin) != (fabs(dmax) - fabs(dmin)))
        cerr << " \n\nERROR: BUG in "
             << plane << "_Phase_Center function\n\n";// call Matt\n";
    else if ((fabs(dmax - dmin) > (PC /16.0)) && (Ap_lambda > 1.0))
        cerr << " \n\nEXCESSIVE ERROR in "
             << plane << "_Phase_Center function \n\n";
        
    return (PC);
}
//












    
 
/* 

 */

    
///* phase_center.c     Matt Reilly 10/28/91 */
// converted for C++  2/17/94 pcw
///* input data:  a       aperture in wavelengths
//                l       length of horn side in wavelengths
//                v       sqrt(l/2) in wavelengths
//                lv      low de value  - error check
//                hv      high de value -  "     "
//                
//    E_Phase_Center returns distance in wavelengths from mouth of horn to
//        E-plane phase center inside horn.
//
//    H_Phase_Center returns distance in wavelengths from mouth of horn to
//        H-plane phase center inside horn.
//
//*/

void phase_init()
{
    ph_init = 0;
}

double epc(double l, double q, double c2, double s2, double C, double S)
//double l, q, c2, s2, C, S;
{
    return l * ( 1 - q * (c2 * C + s2 * S) / (C * C + S * S));
}

double E_Phase_Center(double a, double v, double l, double &lv, double &hv)
//double a, v, l;
//double * lv, * hv;
{
    double q, c2, s2, fc, fcl, fch, fs, fsl, fsh, res;
    
    if(ph_init) phase_init();
    
    q = a / (2 * v);
    
    fc = fresnel_cos(q, fcl, fch);
    fs = fresnel_sin(q, fsl, fsh);
    
    c2 = cos(Pi2 * q * q);
    s2 = sin(Pi2 * q * q);
    
    res = epc(l, q, c2, s2, fc, fs);
    hv = epc(l, q, c2, s2, fch, fsh);
    lv = epc(l, q, c2, s2, fcl, fsl);
    
    return res;
}


double hpc(double l, double r, double t, double c, double s)
//double l, r, t, c, s;
{
    return l * (1 + (((r * c) + (t * s)) / ((c * c) + (s * s))));
}

double H_Phase_Center(double a, double v, double l, double &lv, double &hv)
//double a, v, l;
//double * lv, * hv;
{
    double U, W, CD, CDH, CDL, SD, SDH, SDL, R, T, u2, w2;
    double su, sul, suh, sw, swl, swh;
    double cu, cul, cuh, cw, cwl, cwh;
    double res;


    if(ph_init) phase_init();
        
    U = v / a + a / (2 * v);
    W = v / a - a / (2 * v);
    u2 = Pi2 * U * U;
    w2 = Pi2 * W * W;
    
    
    R = W * cos(u2) - U * cos(w2);
    T = U * sin(w2) - W * sin(u2);
    
    su = fresnel_sin(U, sul, suh);
    sw = fresnel_sin(W, swl, swh);
    cu = fresnel_cos(U, cul, cuh);
    cw = fresnel_cos(W, cwl, cwh);

    CD = cu - cw;
    CDL = cul - cwh;
    CDH = cuh - cwl;    

    SD = - su + sw;
    SDL = - suh + swl;
    SDH = - sul + swh;    
    
    res = hpc(l, R, T, CD, SD);
    hv = hpc(l, R, T, CDH, SDH);
    lv = hpc(l, R, T, CDL, SDL);

    return res;

}

///* 




///* fresnel_integrals.c         Matt Reilly 10/28/91 */
// converted for C++  2/17/94 pcw
//
///*  approximation to Fresnel sine and Fresnel cosine needed to calculate
//    phase centers of horn 
//    
//*/
//
void fresnel_init()
{
    Pi = atan2(0.0, -1.0);
    Pi2 = Pi / 2.0;
    Pi2sq = Pi2 * Pi2;
    lib_init = 0;
}

double fresnel_f(double z)
//double z;
{
    /* from stegun and abramowitz pp 301 and 302. */
    double sum;
    
    sum = (1.0 + 0.926 * z) / (2.0 + 1.792 * z + 3.104 * z * z);
    
    return sum;
}

double fresnel_g(double z)
//double z;
{
    /* from stegun and abramowitz pp 301 and 302. */
    double sum;
    
    sum = 1.0 / (2.0 + 4.142 * z + 3.492 * z * z + 6.670 * z * z * z);
    
    return sum;
}

double fresnel_cos(double z, double &low, double &high)
//double z, *low, *high;
{
    int n;   /* series index */
    double sum, x, f, g, c, s, fs1, fs2, gc1, gc2, sign;
		 
    sign = 1.0;
    if(lib_init)   fresnel_init();
    
    if (z < 0) 
    {
        z = -z; 
	sign = - 1.0;
    }
    else sign = 1.0;
    
    x = Pi2 * z * z;
    f = fresnel_f(z);
    g = fresnel_g(z);
    c = cos(x);
    s = sin(x);
    

    
    sum = 0.5 + 
	  f * s - 
	  g * c;

    fs1 = (f + ERRMARGIN) * s;
    fs2 = (f - ERRMARGIN) * s;
    gc1 = (g + ERRMARGIN) * c;
    gc2 = (g - ERRMARGIN) * c;

    if(sign > 0)
    {
    	low = (0.5 +  MIN(fs1, fs2) - MAX(gc1, gc2));
    	high = (0.5 + MAX(fs1, fs2) - MIN(gc1, gc2));
    }
    else
    {
        low = -1.0 * (0.5 + MAX(fs1, fs2) - MIN(gc1, gc2));
    	high = -1.0 * (0.5 +  MIN(fs1, fs2) - MAX(gc1, gc2));
    }


    return sum * sign;
}


double fresnel_sin(double z, double &low, double &high)
//double z, *low, *high;
{
    int n;   /* series index */
    double sum, x, err, f, g, c, s, fc1, fc2, gs1, gs2, sign;
		 
		 
    if(lib_init)   fresnel_init();
    

    if (z < 0) 
    {
        z = -z; 
	sign = - 1.0;
    }
    else sign = 1.0;
    
    x = Pi2 * z * z;
    f = fresnel_f(z);
    g = fresnel_g(z);
    c = cos(x);
    s = sin(x);
    
    sum = 0.5 - 
	  f * c - 
	  g * s;

    fc1 = (f + ERRMARGIN) * c;
    fc2 = (f - ERRMARGIN) * c;
    gs1 = (g + ERRMARGIN) * s;
    gs2 = (g - ERRMARGIN) * s;
    
    if(sign > 0.0)
    {
        low = (0.5 - MAX(fc1, fc2) - MAX(gs1, gs2));
    	high = (0.5 - MIN(fc1, fc2) - MIN(gs1, gs2));
    }
    else
    {
        low = -1.0 * (0.5 - MIN(fc1, fc2) - MIN(gs1, gs2));
    	high = -1.0 * (0.5 - MAX(fc1, fc2) - MAX(gs1, gs2));
    }

    return sign * sum;
}
//










//forward declaration
double curve(double , int , double ); 


Lens::Lens() : Antenna()                   //constructor
{
    Lens_diam = 0.0;     
    spacing = 0.0  ;
    width_increase = 0.0;
    N = 0 ;
    BW_E_horn = 0.0 ;
    lens_focal_length = 0.0 ;     
    Gain_lens = 0.0 ;
    index = 0.0 ; 
    compensate = 0;
    step = 0.0;
    lens_to_horn = 0.0;
}    

void Lens::dimension()
//assumes that horn variables are available
{
    int bad = 1;
    while (bad >= 1 )
    {
	cout << "Enter approximate lens diameter in " 
             << units << ": ";
	cout.flush();
	cin >> Lens_diam  ;
        Lens_diam *= metric;
        
	cout << "Enter EXACT lens plate spacing in "
             << units << ": ";
	cout.flush();
	cin >> spacing ;
        spacing *= metric;

	if (spacing < (wavelength/2.0))
        {
	    cout << " ERROR - lens plate spacing below cutoff \n";
            bad++ ;
            if (bad >= 3) break;
        }
        
	else if (spacing >= wavelength)
            {
	      cout << " ERROR - lens plate spacing greater than wavelength \n";
              bad++ ;
              if (bad >= 3) break;
            }
            else bad = 0;
    }
}

void Lens::calculate()
{

//* make lens diameter an even number of spacings */

    N = (int)(Lens_diam /(2.0 * spacing)) ;
    if ( (Lens_diam - (2.0 * N * spacing)) > (spacing * 0.5 ))
        ++N;

    Lens_diam = 2.0 * N * spacing ;
    

    Gain_lens = (Lens_diam / E_aperture) * (Lens_diam / E_aperture) ;
        /* gain over bare horn */    

    Gain_lens =  10.0 * log10( Gain_lens );

    index = sqrt( 1.0 - ( wavelength / (2.0 * spacing)) *
			( wavelength / (2.0 * spacing))) ;
        /* effective index of refraction */

    BW_E_horn = (56.0 / ( E_aperture / wavelength ))/crad ; /* Kraus, p. 380 */
        
    lens_focal_length = Lens_diam / (2.0 * tan(BW_E_horn / 2.0)) ; /* E-plane*/
        
/* NOTE: if the E and H focal planes are different, then we can compensate
         by making the lens have a different focal length in each plane;
         for now, it will be symmetrical using the E-plane focal length.
         The unknown is the distance from the horn to the lens, which is
         the lens focal length minus the horn_focal_point distance. */
        
     
//    cout << " This is an f over "
//         << (lens_focal_length/Lens_diam) << " lens \n";
//    cout << " using " << (2*N+1)
//    	 << " lens plates for an actual diameter of " 
//	 << Lens_diam  << " mm \n\n";
//    cout << "\n";
//    cout << " Estimated gain of lens is " << Gain_lens
//	 << " dB added to horn gain \n\n ":

}

void Lens::phasecheck()
{

/* get the phase centers and decide what to do about them */

//    Horn_E_phase_center = Phase_center('E', Ap_E_horn, guide_E);
//    Horn_H_phase_center = Phase_center('H', Ap_H_horn, guide_H);

    cout << "E-Plane phase center is " << E_phase_center
         << " wavelengths inside horn mouth\n";
    cout << "H-Plane phase center is " << H_phase_center
         << " wavelengths inside horn mouth\n\n";
    

    if (fabs(E_phase_center - H_phase_center)>0.062 /*wavelengths*/)
    {
        compensate = 1 ;
        cout << "     Phase correction may be in order,\n "
             << "     or you might want a different horn\n\n";
    }
    else compensate = 0 ;
}


//void Lens::plates()     // calculate radius of individual plates
//{
//    for (int i = 1 ; i <= N; i++ )
//    {
//        radius[i] = curve(radius[0],i) ;
//        radius_2[i] = curve(radius_2[0],i);
//        width_increase = radius[0] - radius[i] ;
//    }
//}

double curve(double radius, int i, double spacing)
{
    double theta ;       /* angle from axis */
    double radius_N ;    /* radius of plate N */

    theta = asin(( (double)i * spacing) / radius) ;

    radius_N = radius * cos(theta) ;

    return (radius_N) ;
}


void Lens::write_data(ostream& ostrm, int interactive)
{
    int i ;
    double FGHz = c / (wavelength * 1000000);

/* now a nice header */

    ostrm << "      Metal plate lens antenna for microwaves  \n\n";
    ostrm << "        ALL dimensions are in millimeters! \n\n" ;

    ostrm << "           ____________     \n";
    ostrm << "          |     E      |    \n";
    ostrm << "          |     ^ -->H |   waveguide  \n";
    ostrm << "          |     |      |    \n";
    ostrm << "           ------------     \n\n";

    ostrm << "  At a center frequency of "
	  << setprecision(3) << FGHz << " GHz\n\n";

    ostrm << "  For a lens with a diameter of "
	  << setprecision(2) << Lens_diam << " mm."
	  << " and a plate spacing of "
	  << setprecision(3) << spacing << " mm. \n\n";

    ostrm << "  Fed by a horn of axial length = "
	  << setprecision(2) << axial_length << " mm, \n"
	  << "      H-plane aperture = " << H_aperture << " mm \n"
	  << "      E-plane aperture = " << E_aperture << " mm \n "
	  << "      and a Gain of " << horn_gain
	  << " dB over isotropic \n\n";

    ostrm << "   E-Plane phase center is " << setprecision(2)
	  << E_phase_center << " wavelengths inside horn mouth\n";
    ostrm << "   H-Plane phase center is " << setprecision(2)
	  << H_phase_center << " wavelengths inside horn mouth\n";

    lens_to_horn = lens_focal_length - (E_phase_center * wavelength);

    ostrm << "  Calculations for an f/" << setprecision(2)
	  << (lens_focal_length/Lens_diam) ;
    ostrm << " lens with a focal length of " << lens_focal_length << " mm. \n"
	  << "      providing an estimated gain of " << Gain_lens
	  << " db over the horn\n\n"
	  << "  Distance from horn mouth to center of lens curve is "
	  << lens_to_horn << " mm.\n";

//    ostrm << "\n\n";
      if(interactive)
      {
	    char pause;
	    cout << "\n\nEnter D to display lens design dimensions: ";
	    cout.flush();
	    cin >> pause;
       }
/* design data */

    double radius[25];
    double radius_2[25];
    int SavedN;
/*    radius[0] = (index - 1.0) * lens_focal_length ; */ /* correct form */
    radius[0] = (1.0 - index ) * lens_focal_length ;      /* positive number */

    radius_2[0] = 2.0 * radius[0] ;

    SavedN = N;
    if (N > 24)
    {
	ostrm << "This is a pretty big lens, so only 50 plates calculated\n";
	N = 24;
    }

    for (i = 1 ; i <= N; i++ )
    {
	radius[i] = curve(radius[0],i,spacing) ;
	radius_2[i] = curve(radius_2[0],i,spacing);
    }

    if (!compensate)
    {

    ostrm << "\n  Radius of Curvature of lens plates starting from "
	  << "center plate\n\n" ;
    ostrm << "   Plate  Single radius   double radius   plate width \n";
    ostrm << "   -----    -------         ---------      -------- \n\n";
    ostrm << setprecision(2)
	  << "   ctr     " << radius[0] << " mm.     " << radius_2[0]
	  << " mm.    min \n";

	for (i = 1 ; i <= N; i++ )
	{
	    width_increase = radius[0] - radius[i] ;

	    ostrm << setprecision(2)
	    << "    " << i << "      " << radius[i] << " mm.     " << radius_2[i]
	    << " mm.    min + " << width_increase << "\n";
	}
    }

    else            /* add column for compensation */
    {

    double c_focal_length = lens_focal_length +
		     (H_phase_center - E_phase_center) * wavelength;

    double c_radius[25];
    c_radius[0] = (1.0 - index) * c_focal_length ;

    ostrm << "\n  Radius of Curvature of lens plates starting from "
	  << "center plate\n" ;
    ostrm << "  with H-Plane phase compensation by shifting plate "
	  << "centers\n";
    ostrm << "  of double-curved lens; positive shift is toward horn.\n\n";

    ostrm << "   Plate  Single radius   Double Radius   Plate Width"
	  << "      Shift\n";
    ostrm << "   -----    -------         ---------     -----------"
	  << "      ----- \n\n";

    ostrm << setprecision(2)
	  << "   ctr     " << radius[0] << " mm.     " << radius_2[0]
	  << " mm.       min \n";

    double shift [25];

	for (i = 1 ; i <= N; i++ )
	{
	    width_increase = radius[0] - radius[i] ;
	    c_radius[i] = curve(c_radius[0],i,spacing);
	    shift[i] = radius[0] - radius[i] - (c_radius[0] - c_radius[i]);

    ostrm << setprecision(2)
	  << "    " << i << "      " << radius[i] << " mm.     " << radius_2[i]
	  << " mm.       min + " << width_increase << "   "
	  << (shift[i]/2.0) << "\n";
	}
    }

    step = wavelength / ( 1.0 - index );

    if ( step < width_increase)
    ostrm << setprecision(2) << "\nFor a Zoned lens plate, "
	  << "step distance = " << step <<" mm.\n\n";

    N = SavedN;
}

void Lens::crude_graphics(ostream& ostrm)
{
/* and a picture to help */


ostrm << "\n\n\n       ****** UNBELIEVABLY CRUDE GRAPHICS ******\n\n";
                                                                                
ostrm << "               Single Curve        Double Curve \n\n";   
                                                                             
ostrm << "                       -----------         -------------\n";
ostrm << "                        ----------          ----------- \n";
ostrm << "        __               ---------    ^      --------- \n";
ostrm << "       |  |               --------    |       -------  \n";
ostrm << "       |  |    <          --------   H|       ---+---  \n";
ostrm << "       |  |    horn       --------    |       -------  \n";
ostrm << "        --               ---------           --------- \n";
ostrm << "       waveguide        ----------          -----------\n";
ostrm << "                       -----------         -------------\n";
ostrm << "                                                 +\n";
ostrm << "                                    centerline   + \n";
ostrm << "                                                 +\n";
ostrm << "                       -----------         -------------\n";
ostrm << "                        \\  LENS  |         \\   LENS    /\n";
ostrm << "       waveguide         \\ PLATE |    ^     \\  PLATE  /\n";
ostrm << "        _____             \\      |    |      \\       / \n";
ostrm << "       |     | <           )<--->|   E|       )<-+->(  \n";
ostrm << "        -----  horn       / min. |    |      /  min. \\ \n";
ostrm << "                      -->/ thick.|       -->/  thick. \\ \n";
ostrm << "                     /  /        |      /  /           \\ \n";
ostrm << "                    /  -----------     /   -------------\n";
ostrm << "                   /                  /                 \n";
ostrm << "                   Radius of curvature            \n\n\n";
}
    





// ****** end of ANTENNA.CPP file



// start of HDL_ANT.CPP 





//forward declarations
int KeyEvent(void);
void menu();
void pdish();
void mlens();
void range();
void newhorn();
void oldhorn();
void nf_corr();
void info();
void postinfo();
void english_units();

int main()
{

    Antenna start;
    start.banner(cout);

    cout << "\n\n\n HDL_ANT - designs, makes calculations, and draws \n"
	 << "           construction templates for microwave \n"
         << "           horn and parabolic dish antennas . \n\n"
	 << " N1BWT 1994 \n\n";
//pause
    char pause;
    cout << "Hit <ENTER> key to continue";
    cout.flush();
    cin.setf(0,ios::skipws);
    cin >> pause;
    cin.setf(1,ios::skipws);

    int k = 0;
    menu();
    
    while ( (k = KeyEvent() ) != CTRL_C)
   {
	if (k)
	{

	   // Mask out the key's scan code.
	   k &= 0x00ff;
	   char mode = (char)k;

	   mode = toupper(mode);
        
	    switch(mode)
            {
                case 'H':   newhorn(); break;    
                case 'E':   oldhorn(); break;
		case 'D':   pdish(); break;
                case 'L':   mlens(); break;
		case 'R':   range(); break;
		case 'C':   nf_corr(); break;
		case 'I':   info(); break;
		case 'P':   postinfo(); break;
                case 'U':   english_units(); break;
                case 'Q':   return 0;
                default: cout  << "Huh?"; break;
	    }

            char pause;
            cout << "\n\nEnter C to continue: ";
	    cout.flush();
	    cin >> pause;

	    menu();
        }             
    }
   return 0;
}
                 
void menu()             // just prints a menu to select from
{                

// clearscreen and reset xy
//        textmode(MONO);
	clrscr();
        gotoxy(1,1);


	cout << "\n"
	  << "Enter first letter for selection \n\n"
          << "   Horn antenna design and template\n"
          << "   Existing horn antenna calculations\n"
          << "   Dish antenna calculations and template\n"
          << "   Lens antenna design\n"
          << "   Range design for antenna measurement\n"
          << "   Corrections for antenna measurements\n"
          << "   Information about HDL_ANT program\n"
          << "   PostScript printing information\n"
          << "   Units: Metric [default] or English\n"
          << "   Quit\n";
}

int KeyEvent(void)
{
    // Check for key press.
    unsigned key = bioskey(1);
    
    // Get key if one is  available.
    if (key) key = bioskey(0);
    
    return key;
    
}


void pdish()
{
    cout << "\n\nPARABOLIC DISH ANTENNA CALCULATIONS AND TEMPLATE GENERATION\n\n";
    Dish d;
    d.get_freq();
    d.d_init();
    d.illumination();
    d.calc_gain();   
    char mode = 'n';
    cout << "\nDo you want to make a PostScript template [Yes or No]?  ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y') d.PS_template();
}


void newhorn()
{
    cout << "\n\nDESIGN A HORN ANTENNA AND GENERATE A CONSTRUCTION TEMPLATE\n\n";
    char mode = 'Y';
    Horn a;
    a.get_freq();
    a.get_wg();
    if (a.bad_input() >= 3) goto end;
    a.lookup();

    while (mode == 'Y')
    {
        a.simple_gain();
        a.horn_angles();
        a.horn_calcgain();
        a.horn_phasecenters();
	a.write_data(cout,1);

        cout << "\nDo you want to change horn dimensions [Yes or No]?  ";
	cout.flush();
	cin >> mode ;
        mode = toupper(mode);

        if (mode == 'Y') a.horn_dimensions();
    }

    mode = 'n';
    cout << "\nDo you want to make a PostScript template [Yes or No]?  ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y')
    {
        a.coords();
        a.PS_template();
    }

    end: ;
}


void oldhorn()
{
    cout << "\n\nHORN ANTENNA CALCULATIONS AND CONSTRUCTION TEMPLATE "
         << "GENERATION\n\n";
    char mode = 'n';
    Horn a;
    a.get_freq();
    a.get_wg();
    if (a.bad_input() >= 3) goto end;
    a.horn_dimensions();
    a.simple_gain();
    a.horn_angles();
    a.horn_calcgain();
    a.horn_phasecenters();
    a.write_data(cout,1);

    cout << "\nDo you want to make a PostScript template [Yes or No]?  ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y')
    {
        a.coords();
        a.PS_template();
    }

    end: ;
}


void mlens()
{
    cout << "\n\nMETAL PLATE LENS ANTENNA DESIGN\n\n";
    char mode = 'n';
    Lens m;
    m.get_freq();
    m.dimension();
    if (m.bad_input() >= 3) goto end;
    m.get_wg();
    m.horn_dimensions();
    m.horn_angles();
    m.horn_calcgain();
    m.calculate();
    m.horn_phasecenters();
    m.phasecheck();
    m.write_data(cout,1);

// set up output file if desired;

    cout << " Save this lens design to file (yes or NO) ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y')
    {
	char  outname[LINESIZE];
        cout << "\nEnter output filename: " ;
	cout.flush();
	cin >> outname ;
    
        ofstream ostrm(outname);

        m.banner(ostrm);
	m.write_data(ostrm,0);
        m.crude_graphics(ostrm);
    }
    end: ;
}

void range()
{
    cout << "\n\nANTENNA RANGE DESIGN CALCULATIONS\n\n";
    Antenna range;
    range.get_freq();
    range.range_calc();
}

void nf_corr()
{
    cout << "\n\n Correction of PANFI readings to Antenna Gain\n\n";
    Antenna c;
    c.get_freq();
    c.PANFI_corr();
}

void info()
{
    Antenna info;
    info.banner(cout);    
    info.info_listing(cout);

// set up output file if desired;

    char mode;
    cout << " \n\nWrite this information to file (Yes or No) ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y')
    {
	char outname[LINESIZE];
        cout << "\nEnter output filename: " ;
	cout.flush();
	cin >> outname ;
    
        ofstream ostrm(outname);

        info.banner(ostrm);
        info.info_listing(ostrm);
    }
}

void postinfo()
{
    Antenna pp;
    pp.post_print(cout);

// set up output file if desired;

    char mode;
    cout << " \n\nWrite this information to file (Yes or No) ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y')
    {
	char outname[LINESIZE];
        cout << "\nEnter output filename: " ;
	cout.flush();
	cin >> outname ;
    
        ofstream ostrm(outname);

        pp.post_print(ostrm);
    }
}

void english_units()
{
    char mode;

    cout << " \n\nCurrently using " << unit_type 
         << " units for dimensions\n";
    
    cout << " \n\nChange to alternate units(Yes or No) ";
    cout.flush();
    cin >> mode ;
    mode = toupper(mode);

    if (mode == 'Y')
    {
        if (metric == 1.0)  // change to English
        {
            metric = 25.4;
	    units = "inches";
	    unit_type = "English";
	}
	else                // change to metric
	{
	    metric = 1.0;
	    units = " mm.  ";
            unit_type = "Metric ";
        }
    }
}
         
    

// end of HDL_ANT.CPP