1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
|
"""
.. _dynamictable-howtoguide:
DynamicTable How-To Guide
=========================
This is a user guide to interacting with ``DynamicTable`` objects.
"""
###############################################################################
# Introduction
# ------------
# The :py:class:`~hdmf.common.table.DynamicTable` class represents a column-based table
# to which you can add custom columns. It consists of a name, a description, a list of
# row IDs, and a list of columns. Columns are represented by objects of the class
# :py:class:`~hdmf.common.table.VectorData`, including subclasses of
# :py:class:`~hdmf.common.table.VectorData`, such as :py:class:`~hdmf.common.table.VectorIndex`,
# and :py:class:`~hdmf.common.table.DynamicTableRegion`.
###############################################################################
# Constructing a table
# --------------------
# To create a :py:class:`~hdmf.common.table.DynamicTable`, call the constructor for
# :py:class:`~hdmf.common.table.DynamicTable` with a string ``name`` and string
# ``description``. Specifying the arguments with keywords is recommended.
# sphinx_gallery_thumbnail_path = 'figures/gallery_thumbnail_dynamictable.png'
from hdmf.common import DynamicTable
table = DynamicTable(
name='my_table',
description='an example table',
)
###############################################################################
# Initializing columns
# --------------------
# You can create a :py:class:`~hdmf.common.table.DynamicTable` with particular
# columns by passing a list or tuple of
# :py:class:`~hdmf.common.table.VectorData` objects for the ``columns`` argument
# in the constructor.
#
# If the :py:class:`~hdmf.common.table.VectorData` objects contain data values,
# then each :py:class:`~hdmf.common.table.VectorData` object must contain the
# same number of rows as each other. A list of row IDs may be passed into the
# :py:class:`~hdmf.common.table.DynamicTable` constructor using the ``id``
# argument. If IDs are passed in, there should be the same number of rows as
# the column data. If IDs are not passed in, then the IDs will be set to
# ``range(len(column_data))`` by default.
from hdmf.common import VectorData, VectorIndex
col1 = VectorData(
name='col1',
description='column #1',
data=[1, 2],
)
col2 = VectorData(
name='col2',
description='column #2',
data=['a', 'b'],
)
# this table will have two rows with ids 0 and 1
table = DynamicTable(
name='my table',
description='an example table',
columns=[col1, col2],
)
# this table will have two rows with ids 0 and 1
table_set_ids = DynamicTable(
name='my table',
description='an example table',
columns=[col1, col2],
id=[0, 1],
)
###############################################################################
# If a list of integers in passed to ``id``,
# :py:class:`~hdmf.common.table.DynamicTable` automatically creates
# an :py:class:`~hdmf.common.table.ElementIdentifiers` object, which is the data type
# that stores row IDs. The above command is equivalent to:
from hdmf.common.table import ElementIdentifiers
table_set_ids = DynamicTable(
name='my table',
description='an example table',
columns=[col1, col2],
id=ElementIdentifiers(name='id', data=[0, 1]),
)
###############################################################################
# Adding rows
# -----------
# You can also add rows to a :py:class:`~hdmf.common.table.DynamicTable` using
# :py:meth:`DynamicTable.add_row <hdmf.common.table.DynamicTable.add_row>`.
# A keyword argument for every column in the table must be supplied.
# You may also supply an optional row ID.
table.add_row(
col1=3,
col2='c',
id=2,
)
###############################################################################
# .. note::
# If no ID is supplied, the row ID is automatically set to the number of rows of the table prior to adding the new
# row. This can result in duplicate IDs. In general, IDs should be unique, but this is not enforced by default.
# Pass `enforce_unique_id=True` to :py:meth:`DynamicTable.add_row <hdmf.common.table.DynamicTable.add_row>`
# to raise an error if the ID is set to an existing ID value.
# this row will have ID 3 by default
table.add_row(
col1=4,
col2='d',
)
###############################################################################
# Adding columns
# --------------
# You can add columns to a :py:class:`~hdmf.common.table.DynamicTable` using
# :py:meth:`DynamicTable.add_column <hdmf.common.table.DynamicTable.add_column>`.
# If the table already has rows, then the ``data`` argument must be supplied
# as a list of values, one for each row already in the table.
table.add_column(
name='col3',
description='column #3',
data=[True, True, False, True], # specify data for the 4 rows in the table
)
###############################################################################
# Enumerated (categorical) data
# -----------------------------
# :py:class:`~hdmf.common.table.EnumData` is a special type of column for storing
# an enumerated data type. This way each unique value is stored once, and the data
# references those values by index. Using this method is more efficient than storing
# a single value many times, and has the advantage of communicating to downstream
# tools that the data is categorical in nature.
#
# .. warning::
#
# :py:class:`~hdmf.common.table.EnumData` is currently an experimental
# feature and as such should not be used for production use.
#
from hdmf.common.table import EnumData
import warnings
warnings.filterwarnings(action="ignore", message="EnumData is experimental")
# this column has a length of 5, not 3. the first row has value "aa"
enum_col = EnumData(
name='cell_type',
description='this column holds categorical variables',
data=[0, 1, 2, 1, 0],
elements=['aa', 'bb', 'cc']
)
my_table = DynamicTable(
name='my_table',
description='an example table',
columns=[enum_col],
)
###############################################################################
# Ragged array columns
# --------------------
# A table column with a different number of elements for each row is called a
# "ragged array column". To initialize a :py:class:`~hdmf.common.table.DynamicTable`
# with a ragged array column, pass both
# the :py:class:`~hdmf.common.table.VectorIndex` and its target
# :py:class:`~hdmf.common.table.VectorData` in for the ``columns``
# argument in the constructor. For instance, the following code creates a column
# called ``col1`` where the first cell is ['1a', '1b', '1c'] and the second cell
# is ['2a'].
col1 = VectorData(
name='col1',
description='column #1',
data=['1a', '1b', '1c', '2a'],
)
# the 3 signifies that elements 0 to 3 (exclusive) of the target column belong to the first row
# the 4 signifies that elements 3 to 4 (exclusive) of the target column belong to the second row
col1_ind = VectorIndex(
name='col1_index',
target=col1,
data=[3, 4],
)
table_ragged_col = DynamicTable(
name='my table',
description='an example table',
columns=[col1, col1_ind],
)
####################################################################################
# .. note::
# By convention, the name of the :py:class:`~hdmf.common.table.VectorIndex` should be
# the name of the target column with the added suffix "_index".
####################################################################################
# VectorIndex.data provides the indices for how to break VectorData.data into cells
#
# You can add an empty ragged array column to an existing
# :py:class:`~hdmf.common.table.DynamicTable` by specifying ``index=True``
# to :py:meth:`DynamicTable.add_column <hdmf.common.table.DynamicTable.add_column>`.
# This method only works if run before any rows have been added to the table.
new_table = DynamicTable(
name='my_table',
description='an example table',
)
new_table.add_column(
name='col4',
description='column #4',
index=True,
)
###############################################################################
# If the table already contains data, you must specify the new column values for
# the existing rows using the ``data`` argument and you must specify the end indices of
# the ``data`` argument that correspond to each row as a list/tuple/array of values for
# the ``index`` argument.
table.add_column( # <-- this table already has 4 rows
name='col4',
description='column #4',
data=[1, 0, -1, 0, -1, 1, 1, -1],
index=[3, 4, 6, 8], # specify the end indices (exclusive) of data for each row
)
###############################################################################
# Alternatively we may also define the ragged array data as a nested list
# and use the ``index`` argument to indicate the number of levels. In this case,
# the :py:class:`~hdmf.common.table.DynamicTable.add_column` function will
# automatically flatten the data array and compute the corresponding index vectors.
table.add_column( # <-- this table already has 4 rows
name='col5',
description='column #5',
data=[[[1, ], [2, 2]], # row 1
[[3, 3], ], # row 2
[[4, ], [5, 5]], # row 3
[[6, 6], [7, 7, 7]]], # row 4
index=2 # number of levels in the ragged array
)
# Show that the ragged array was converted to flat VectorData with a double VectorIndex
print("Flattened data: %s" % str(table.col5.data))
print("Level 1 index: %s" % str(table.col5_index.data))
print("Level 2 index: %s" % str(table.col5_index_index.data))
###############################################################################
# Referencing rows of other tables
# --------------------------------
# You can create a column that references rows of another table by adding a
# :py:class:`~hdmf.common.table.DynamicTableRegion` object as a column of your
# :py:class:`~hdmf.common.table.DynamicTable`. This is analogous to
# a foreign key in a relational database.
from hdmf.common.table import DynamicTableRegion
dtr_col = DynamicTableRegion(
name='table1_ref',
description='references rows of earlier table',
data=[0, 1, 0, 0], # refers to row indices of the 'table' variable
table=table
)
data_col = VectorData(
name='col2',
description='column #2',
data=['a', 'a', 'a', 'b'],
)
table2 = DynamicTable(
name='my_table',
description='an example table',
columns=[dtr_col, data_col],
)
###############################################################################
# Here, the ``data`` of ``dtr_col`` maps to rows of ``table`` (0-indexed).
#
# .. note::
# The ``data`` values of :py:class:`~hdmf.common.table.DynamicTableRegion` map to the row
# index, not the row ID, though if you are using default IDs, these values will be the
# same.
#
# Reference more than one row of another table with a
# :py:class:`~hdmf.common.table.DynamicTableRegion` indexed by a
# :py:class:`~hdmf.common.table.VectorIndex`.
indexed_dtr_col = DynamicTableRegion(
name='table1_ref2',
description='references multiple rows of earlier table',
data=[0, 0, 1, 1, 0, 0, 1],
table=table
)
# row 0 refers to rows [0, 0], row 1 refers to rows [1], row 2 refers to rows [1, 0], row 3 refers to rows [0, 1] of
# the "table" variable
dtr_idx = VectorIndex(
name='table1_ref2_index',
target=indexed_dtr_col,
data=[2, 3, 5, 7],
)
table3 = DynamicTable(
name='my_table',
description='an example table',
columns=[dtr_idx, indexed_dtr_col],
)
###############################################################################
# Setting the target table of a DynamicTableRegion column of a DynamicTable
# -------------------------------------------------------------------------
# A subclass of DynamicTable might have a pre-defined DynamicTableRegion column.
# To write this column correctly, the "table" attribute of the column must be set so
# that users know to what table the row index values reference. Because the target
# table could be any table, the "table" attribute must be set explicitly. There are three
# ways to do so. First, you can use the ``target_tables`` argument of the
# DynamicTable constructor as shown below. This argument
# is a dictionary mapping the name of the DynamicTableRegion column to
# the target table. Secondly, the target table can be set after the DynamicTable
# has been initialized using ``my_table.my_column.table = other_table``. Finally,
# you can create the DynamicTableRegion column and pass the ``table``
# attribute to `DynamicTableRegion.__init__` and then pass the column to
# `DynamicTable.__init__` using the `columns` argument. However, this approach
# is not recommended for columns defined in the schema, because it is up to
# the user to ensure that the column is created in accordance with the schema.
class SubTable(DynamicTable):
__columns__ = (
{'name': 'dtr', 'description': 'required region', 'required': True, 'table': True},
)
referenced_table = DynamicTable(
name='referenced_table',
description='an example table',
)
sub_table = SubTable(
name='sub_table',
description='an example table',
target_tables={'dtr': referenced_table},
)
# now the target table of the DynamicTableRegion column 'dtr' is set to `referenced_table`
###############################################################################
# Creating an expandable table
# ----------------------------
# When using the default HDF5 backend, each column of these tables is an HDF5 Dataset,
# which by default are set in size. This means that once a file is written, it is not
# possible to add a new row. If you want to be able to save this file, load it, and add
# more rows to the table, you will need to set this up when you create the
# :py:class:`~hdmf.common.table.DynamicTable`. You do this by wrapping the data with
# :py:class:`~hdmf.backends.hdf5.h5_utils.H5DataIO` and the argument ``maxshape=(None, )``.
from hdmf.backends.hdf5.h5_utils import H5DataIO
col1 = VectorData(
name='expandable_col1',
description='column #1',
data=H5DataIO(data=[1, 2], maxshape=(None,)),
)
col2 = VectorData(
name='expandable_col2',
description='column #2',
data=H5DataIO(data=['a', 'b'], maxshape=(None,)),
)
# don't forget to wrap the row IDs too!
ids = ElementIdentifiers(
name='id',
data=H5DataIO(data=[0, 1], maxshape=(None,)),
)
expandable_table = DynamicTable(
name='expandable_table',
description='an example table that can be expanded after being saved to a file',
columns=[col1, col2],
id=ids,
)
###############################################################################
# Now you can write the file, read it back, and run ``expandable_table.add_row()``.
# In this example, we are setting ``maxshape`` to ``(None,)``, which means this is a
# 1-dimensional matrix that can expand indefinitely along its single dimension. You
# could also use an integer in place of ``None``. For instance, ``maxshape=(8,)`` would
# allow the column to grow up to a length of 8. Whichever ``maxshape`` you choose,
# it should be the same for all :py:class:`~hdmf.common.table.VectorData` and
# :py:class:`~hdmf.common.table.ElementIdentifiers` objects in the
# :py:class:`~hdmf.common.table.DynamicTable`, since they must always be the same
# length. The default :py:class:`~hdmf.common.table.ElementIdentifiers` automatically
# generated when you pass a list of integers to the ``id`` argument of the
# :py:class:`~hdmf.common.table.DynamicTable` constructor is not expandable, so do not
# forget to create a :py:class:`~hdmf.common.table.ElementIdentifiers` object, and wrap
# that data as well. If any of the columns are indexed, the ``data`` argument of
# :py:class:`~hdmf.common.table.VectorIndex` will also need to be wrapped with
# :py:class:`~hdmf.backends.hdf5.h5_utils.H5DataIO`.
#
#
# Converting the table to a pandas ``DataFrame``
# ----------------------------------------------
# `pandas`_ is a popular data analysis tool, especially for working with tabular data.
# You can convert your :py:class:`~hdmf.common.table.DynamicTable` to a
# :py:class:`~pandas.DataFrame` using
# :py:meth:`DynamicTable.to_dataframe <hdmf.common.table.DynamicTable.to_dataframe>`.
# Accessing the table as a :py:class:`~pandas.DataFrame` provides you with powerful,
# standard methods for indexing, selecting, and querying tabular data from `pandas`_.
# This is the recommended method of reading data from your table. See also the `pandas indexing documentation`_.
# Printing a :py:class:`~hdmf.common.table.DynamicTable` as a :py:class:`~pandas.DataFrame`
# or displaying the :py:class:`~pandas.DataFrame` in Jupyter shows a more intuitive
# tabular representation of the data than printing the
# :py:class:`~hdmf.common.table.DynamicTable` object.
#
# .. _pandas: https://pandas.pydata.org/
# .. _`pandas indexing documentation`: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
df = table.to_dataframe()
###############################################################################
# .. note::
#
# Changes to the ``DataFrame`` will not be saved in the ``DynamicTable``.
###############################################################################
# Converting the table from a pandas ``DataFrame``
# ------------------------------------------------
# If your data is already in a :py:class:`~pandas.DataFrame`, you can convert the
# ``DataFrame`` to a :py:class:`~hdmf.common.table.DynamicTable` using the class method
# :py:meth:`DynamicTable.from_dataframe <hdmf.common.table.DynamicTable.from_dataframe>`.
table_from_df = DynamicTable.from_dataframe(
name='my_table',
df=df,
)
###############################################################################
# Accessing elements
# ------------------
# To access an element in the i-th row in the column with name "col_name" in a
# :py:class:`~hdmf.common.table.DynamicTable`, use square brackets notation:
# ``table[i, col_name]``. You can also use a tuple of row index and column
# name within the square brackets.
table[0, 'col1'] # returns 1
table[(0, 'col1')] # returns 1
###############################################################################
# If the column is a ragged array, instead of a single value being returned,
# a list of values for that element is returned.
table[0, 'col4'] # returns [1, 0, -1]
###############################################################################
# Standard Python and numpy slicing can be used for the row index.
import numpy as np
table[:2, 'col1'] # get a list of elements from the first two rows at column 'col1'
table[0:3:2, 'col1'] # get a list of elements from rows 0 to 3 (exclusive) in steps of 2 at column 'col1'
table[3::-1, 'col1'] # get a list of elements from rows 3 to 0 in reverse order at column 'col1'
# the following are equivalent to table[0:3:2, 'col1']
table[slice(0, 3, 2), 'col1']
table[np.s_[0:3:2], 'col1']
table[[0, 2], 'col1']
table[np.array([0, 2]), 'col1']
###############################################################################
# If the column is a ragged array, instead of a list of row values being returned,
# a list of list elements for the selected rows is returned.
table[:2, 'col4'] # returns [[1, 0, -1], [0]]
###############################################################################
# .. note::
#
# You cannot supply a list/tuple for the column name. For this
# kind of access, first convert the :py:class:`~hdmf.common.table.DynamicTable`
# to a :py:class:`~pandas.DataFrame`.
###############################################################################
# Accessing columns
# -----------------
# To access all the values in a column, use square brackets with a colon for the
# row index: ``table[:, col_name]``. If the column is a ragged array, a list of
# list elements is returned.
table[:, 'col1'] # returns [1, 2, 3, 4]
table[:, 'col4'] # returns [[1, 0, -1], [0], [-1, 1], [1, -1]]
###############################################################################
# Accessing rows
# --------------
# To access the i-th row in a :py:class:`~hdmf.common.table.DynamicTable`, returned
# as a :py:class:`~pandas.DataFrame`, use the syntax ``table[i]``. Standard Python
# and numpy slicing can be used for the row index.
table[0] # get the 0th row of the table as a DataFrame
table[:2] # get the first two rows
table[0:3:2] # get rows 0 to 3 (exclusive) in steps of 2
table[3::-1] # get rows 3 to 0 in reverse order
# the following are equivalent to table[0:3:2]
table[slice(0, 3, 2)]
table[np.s_[0:3:2]]
table[[0, 2]]
table[np.array([0, 2])]
###############################################################################
# .. note::
#
# The syntax ``table[i]`` returns the i-th row, NOT the row with ID of `i`.
###############################################################################
# Iterating over rows
# --------------------
# To iterate over the rows of a :py:class:`~hdmf.common.table.DynamicTable`,
# first convert the :py:class:`~hdmf.common.table.DynamicTable` to a
# :py:class:`~pandas.DataFrame` using
# :py:meth:`DynamicTable.to_dataframe <hdmf.common.table.DynamicTable>`.
# For more information on iterating over a :py:class:`~pandas.DataFrame`,
# see https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#iteration
df = table.to_dataframe()
for row in df.itertuples():
print(row)
###############################################################################
# Accessing the column data types
# -------------------------------
# To access the :py:class:`~hdmf.common.table.VectorData` or
# :py:class:`~hdmf.common.table.VectorIndex` object representing a column, you
# can use three different methods. Use the column name in square brackets, e.g.,
# ``table[col_name]``, use the
# :py:meth:`DynamicTable.get <hdmf.common.table.DynamicTable.get>` method, or
# use the column name as an attribute, e.g., ``table.col_name``.
table['col1']
table.get('col1') # equivalent to table['col1'] except this returns None if 'col1' is not found
table.get('col1', default=0) # you can change the default return value
table.col1
###############################################################################
# .. note::
#
# Using the column name as an attribute does NOT work if the column name is
# the same as a non-column name attribute or method of the
# :py:class:`~hdmf.common.table.DynamicTable` class,
# e.g., ``name``, ``description``, ``object_id``, ``parent``, ``modified``.
###############################################################################
# If the column is a ragged array, then the methods above will return the
# :py:class:`~hdmf.common.table.VectorIndex` associated with the ragged array.
table['col4']
table.get('col4') # equivalent to table['col4'] except this returns None if 'col4' is not found
table.get('col4', default=0) # you can change the default return value
###############################################################################
# .. note::
#
# The attribute syntax ``table.col_name`` currently returns the ``VectorData``
# instead of the ``VectorIndex`` for a ragged array. This is a known
# issue and will be fixed in a future version of HDMF.
###############################################################################
# Accessing elements from column data types
# -----------------------------------------
# Standard Python and numpy slicing can be used on the
# :py:class:`~hdmf.common.table.VectorData` or
# :py:class:`~hdmf.common.table.VectorIndex` objects to access elements from
# column data. If the column is a ragged array, then instead of a list of row
# values being returned, a list of list elements for the selected rows is returned.
table['col1'][0] # get the 0th element from column 'col1'
table['col1'][:2] # get a list of the 0th and 1st elements
table['col1'][0:3:2] # get a list of the 0th to 3rd (exclusive) elements in steps of 2
table['col1'][3::-1] # get a list of the 3rd to 0th elements in reverse order
# the following are equivalent to table['col1'][0:3:2]
table['col1'][slice(0, 3, 2)]
table['col1'][np.s_[0:3:2]]
table['col1'][[0, 2]]
table['col1'][np.array([0, 2])]
# this slicing and indexing works for ragged array columns as well
table['col4'][:2] # get a list of the 0th and 1st list elements
###############################################################################
# .. note::
#
# The syntax ``table[col_name][i]`` is equivalent to ``table[i, col_name]``.
###############################################################################
# Multi-dimensional columns
# -------------------------
# A column can be represented as a multi-dimensional rectangular array or a list of lists, each containing the
# same number of elements.
col5 = VectorData(
name='col5',
description='column #5',
data=[['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']],
)
###############################################################################
# Ragged multi-dimensional columns
# ---------------------------------
# Each element within a column can be an n-dimensional array or list or lists.
# This is true for ragged array columns as well.
col6 = VectorData(
name='col6',
description='column #6',
data=[['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']],
)
col6_ind = VectorIndex(
name='col6_index',
target=col6,
data=[2, 3],
)
###############################################################################
# Nested ragged array columns
# ---------------------------
# In the example above, the ragged array column above has two rows. The first row has two elements,
# where each element has 3 sub-elements. This can be thought of as a 2x3 array.
# The second row has one element with 3 sub-elements, or a 1x3 array. This
# works only if the data for ``col5`` is a rectangular array, that is, each row
# element contains the same number of sub-elements. If each row element does
# not contain the same number of sub-elements, then a nested ragged array
# approach must be used instead.
#
# A :py:class:`~hdmf.common.table.VectorIndex` object can index another
# :py:class:`~hdmf.common.table.VectorIndex` object. For example, the first row
# of a table might be a 2x3 array, the second row might be a 3x2 array, and the
# third row might be a 1x1 array. This cannot be represented by a singly
# indexed column, but can be represented by a nested ragged array column.
col7 = VectorData(
name='col7',
description='column #6',
data=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm'],
)
col7_ind = VectorIndex(
name='col7_index',
target=col7,
data=[3, 6, 8, 10, 12, 13],
)
col7_ind_ind = VectorIndex(
name='col7_index_index',
target=col7_ind,
data=[2, 5, 6],
)
# all indices must be added to the table
table_double_ragged_col = DynamicTable(
name='my table',
description='an example table',
columns=[col7, col7_ind, col7_ind_ind],
)
###############################################################################
# Access the first row using the same syntax as before, except now a list of
# lists is returned. You can then index the resulting list of lists to access
# the individual elements.
table_double_ragged_col[0, 'col7'] # returns [['a', 'b', 'c'], ['d', 'e', 'f']]
table_double_ragged_col['col7'][0] # same as line above
###############################################################################
# Accessing the column named 'col7' using square bracket notation will return
# the top-level :py:class:`~hdmf.common.table.VectorIndex` for the column.
# Accessing the column named 'col7' using dot notation will return the
# :py:class:`~hdmf.common.table.VectorData` object
table_double_ragged_col['col7'] # returns col7_ind_ind
table_double_ragged_col.col7 # returns the col7 VectorData object
###############################################################################
# Accessing data from a ``DynamicTable`` that contain references to rows of other ``DynamicTable`` objects
# --------------------------------------------------------------------------------------------------------
# By default, when
# :py:meth:`DynamicTable.__getitem__ <hdmf.common.table.DynamicTable.__getitem__>`
# and :py:meth:`DynamicTable.get <hdmf.common.table.DynamicTable.get>` are supplied
# with an int, list of ints, numpy array, or a slice representing rows to return,
# a pandas :py:class:`~pandas.DataFrame` is returned. If the
# :py:class:`~hdmf.common.table.DynamicTable` contains a
# :py:class:`~hdmf.common.table.DynamicTableRegion` column that references rows
# of other ``DynamicTable`` objects, then by default, the
# :py:meth:`DynamicTable.__getitem__ <hdmf.common.table.DynamicTable.__getitem__>`
# and :py:meth:`DynamicTable.get <hdmf.common.table.DynamicTable.get>` methods will
# return row indices of the referenced table, and not the contents of the referenced
# table. To return the contents of the referenced table as a nested
# :py:class:`~pandas.DataFrame` containing only the referenced rows, use
# :py:meth:`DynamicTable.get <hdmf.common.table.DynamicTable.get>` with ``index=False``.
# create a new table of users
users_table = DynamicTable(
name='users',
description='a table containing data/metadata about users, one user per row',
)
# add simple columns to this table
users_table.add_column(
name='first_name',
description='the first name of the user',
)
users_table.add_column(
name='last_name',
description='the last name of the user',
)
# create a new table of addresses to reference
addresses_table = DynamicTable(
name='addresses',
description='a table containing data/metadata about addresses, one address per row',
)
addresses_table.add_column(
name='street_address',
description='the street number and address',
)
addresses_table.add_column(
name='city',
description='the city of the address',
)
# add rows to the addresses table
addresses_table.add_row(
street_address='123 Main St',
city='Springfield'
)
addresses_table.add_row(
street_address='45 British Way',
city='London'
)
# add a column to the users table that references rows of the addresses table
users_table.add_column(
name='address',
description='the address of the user',
table=addresses_table
)
# add rows to the users table
users_table.add_row(
first_name='Grace',
last_name='Hopper',
address=0 # <-- row index of the address table
)
users_table.add_row(
first_name='Alan',
last_name='Turing',
address=1 # <-- row index of the address table
)
# get the first row of the users table
users_table.get(0)
###############################################################################
#
# get the first row of the users table with a nested dataframe
users_table.get(0, index=False)
###############################################################################
#
# get the first two rows of the users table
users_table.get([0, 1])
###############################################################################
#
# get the first two rows of the users table with nested dataframes
# of the addresses table in the address column
users_table.get([0, 1], index=False)
###############################################################################
# .. note::
# You can also get rows from a :py:class:`~hdmf.common.table.DynamicTable` as a list of
# lists where the i-th nested list contains the values for the i-th row. This method is
# generally not recommended.
###############################################################################
# Displaying the contents of a table with references to another table
# -------------------------------------------------------------------
# Earlier, we converted a :py:class:`~hdmf.common.table.DynamicTable` to a
# :py:class:`~pandas.DataFrame` using
# :py:meth:`DynamicTable.to_dataframe <hdmf.common.table.DynamicTable.to_dataframe>`
# and printed the :py:class:`~pandas.DataFrame` to see its contents.
# This also works when the :py:class:`~hdmf.common.table.DynamicTable` contains a column
# that references another table. However, the entries for this column for each row
# will be printed as a nested :py:class:`~pandas.DataFrame`. This can be difficult to
# read, so to view only the row indices of the referenced table, pass
# ``index=True`` to
# :py:meth:`DynamicTable.to_dataframe <hdmf.common.table.DynamicTable.to_dataframe>`.
users_df = users_table.to_dataframe(index=True)
users_df
###############################################################################
# You can then access the referenced table using the ``table`` attribute of the
# column object. This is useful when reading a table from a file where you may not have
# a variable to access the referenced table.
#
# First, use :py:meth:`DynamicTable.__getitem__ <hdmf.common.table.DynamicTable.__getitem__>`
# (square brackets notation) to get the
# :py:class:`~hdmf.common.table.DynamicTableRegion` object representing the column.
# Then access its ``table`` attribute to get the addresses table and convert the table
# to a :py:class:`~pandas.DataFrame`.
address_column = users_table['address']
read_addresses_table = address_column.table
addresses_df = read_addresses_table.to_dataframe()
###############################################################################
# Get the addresses corresponding to the rows of the users table:
address_indices = users_df['address'] # pandas Series of row indices into the addresses table
addresses_df.iloc[address_indices] # use .iloc because these are row indices not ID values
###############################################################################
# .. note::
# The indices returned by ``users_df['address']`` are row indices and not
# the ID values of the table. However, if you are using default IDs, these
# values will be the same.
###############################################################################
# Creating custom DynamicTable subclasses
# ---------------------------------------
# TODO
###############################################################################
# Defining ``__columns__``
# ^^^^^^^^^^^^^^^^^^^^^^^^
# TODO
|