1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
"""
HERD: HDMF External Resources Data Structure
==============================================
This is a user guide to interacting with the
:py:class:`~hdmf.common.resources.HERD` class. The HERD type
is experimental and is subject to change in future releases. If you use this type,
please provide feedback to the HDMF team so that we can improve the structure and
access of data stored with this type for your use cases.
Introduction
-------------
The :py:class:`~hdmf.common.resources.HERD` class provides a way
to organize and map user terms from their data (keys) to multiple entities
from the external resources. A typical use case for external resources is to link data
stored in datasets or attributes to ontologies. For example, you may have a
dataset ``country`` storing locations. Using
:py:class:`~hdmf.common.resources.HERD` allows us to link the
country names stored in the dataset to an ontology of all countries, enabling
more rigid standardization of the data and facilitating data query and
introspection.
From a user's perspective, one can think of the
:py:class:`~hdmf.common.resources.HERD` as a simple table, in which each
row associates a particular ``key`` stored in a particular ``object`` (i.e., Attribute
or Dataset in a file) with a particular ``entity`` (i.e, a term of an online
resource). That is, ``(object, key)`` refer to parts inside a
file and ``entity`` refers to an external resource outside the file, and
:py:class:`~hdmf.common.resources.HERD` allows us to link the two. To
reduce data redundancy and improve data integrity,
:py:class:`~hdmf.common.resources.HERD` stores this data internally in a
collection of interlinked tables.
* :py:class:`~hdmf.common.resources.KeyTable` where each row describes a
:py:class:`~hdmf.common.resources.Key`
* :py:class:`~hdmf.common.resources.FileTable` where each row describes a
:py:class:`~hdmf.common.resources.File`
* :py:class:`~hdmf.common.resources.EntityTable` where each row describes an
:py:class:`~hdmf.common.resources.Entity`
* :py:class:`~hdmf.common.resources.EntityKeyTable` where each row describes an
:py:class:`~hdmf.common.resources.EntityKey`
* :py:class:`~hdmf.common.resources.ObjectTable` where each row describes an
:py:class:`~hdmf.common.resources.Object`
* :py:class:`~hdmf.common.resources.ObjectKeyTable` where each row describes an
:py:class:`~hdmf.common.resources.ObjectKey` pair identifying which keys
are used by which objects.
The :py:class:`~hdmf.common.resources.HERD` class then provides
convenience functions to simplify interaction with these tables, allowing users
to treat :py:class:`~hdmf.common.resources.HERD` as a single large table as
much as possible.
Rules to HERD
---------------------------
When using the :py:class:`~hdmf.common.resources.HERD` class, there
are rules to how users store information in the interlinked tables.
1. Multiple :py:class:`~hdmf.common.resources.Key` objects can have the same name.
They are disambiguated by the :py:class:`~hdmf.common.resources.Object` associated
with each, meaning we may have keys with the same name in different objects, but for a particular object
all keys must be unique.
2. In order to query specific records, the :py:class:`~hdmf.common.resources.HERD` class
uses '(file, object_id, relative_path, field, key)' as the unique identifier.
3. :py:class:`~hdmf.common.resources.Object` can have multiple :py:class:`~hdmf.common.resources.Key`
objects.
4. Multiple :py:class:`~hdmf.common.resources.Object` objects can use the same :py:class:`~hdmf.common.resources.Key`.
5. Do not use the private methods to add into the :py:class:`~hdmf.common.resources.KeyTable`,
:py:class:`~hdmf.common.resources.FileTable`, :py:class:`~hdmf.common.resources.EntityTable`,
:py:class:`~hdmf.common.resources.ObjectTable`, :py:class:`~hdmf.common.resources.ObjectKeyTable`,
:py:class:`~hdmf.common.resources.EntityKeyTable` individually.
6. URIs are optional, but highly recommended. If not known, an empty string may be used.
7. An entity ID should be the unique string identifying the entity in the given resource.
This may or may not include a string representing the resource and a colon.
Use the format provided by the resource. For example, Identifiers.org uses the ID ``ncbigene:22353``
but the NCBI Gene uses the ID ``22353`` for the same term.
8. In a majority of cases, :py:class:`~hdmf.common.resources.Object` objects will have an empty string
for 'field'. The :py:class:`~hdmf.common.resources.HERD` class supports compound data_types.
In that case, 'field' would be the field of the compound data_type that has an external reference.
9. In some cases, the attribute that needs an external reference is not a object with a 'data_type'.
The user must then use the nearest object that has a data type to be used as the parent object. When
adding an external resource for an object with a data type, users should not provide an attribute.
When adding an external resource for an attribute of an object, users need to provide
the name of the attribute.
10. The user must provide a :py:class:`~hdmf.common.resources.File` or an :py:class:`~hdmf.common.resources.Object` that
has :py:class:`~hdmf.common.resources.File` along the parent hierarchy.
"""
######################################################
# Creating an instance of the HERD class
# ----------------------------------------------------
# sphinx_gallery_thumbnail_path = 'figures/gallery_thumbnail_externalresources.png'
from hdmf.common import HERD
from hdmf.common import DynamicTable, VectorData
from hdmf.term_set import TermSet
from hdmf import Container, HERDManager
from hdmf import Data
import numpy as np
import os
# Ignore experimental feature warnings in the tutorial to improve rendering
import warnings
warnings.filterwarnings("ignore", category=UserWarning, message="HERD is experimental*")
try:
dir_path = os.path.dirname(os.path.abspath(__file__))
yaml_file = os.path.join(dir_path, 'example_term_set.yaml')
except NameError:
dir_path = os.path.dirname(os.path.abspath('.'))
yaml_file = os.path.join(dir_path, 'gallery/example_term_set.yaml')
# Class to represent a file
class HERDManagerContainer(Container, HERDManager):
def __init__(self, **kwargs):
kwargs['name'] = 'HERDManagerContainer'
super().__init__(**kwargs)
herd = HERD()
file = HERDManagerContainer(name='file')
###############################################################################
# Using the add_ref method
# ------------------------------------------------------
# :py:func:`~hdmf.common.resources.HERD.add_ref`
# is a wrapper function provided by the
# :py:class:`~hdmf.common.resources.HERD` class that simplifies adding
# data. Using :py:func:`~hdmf.common.resources.HERD.add_ref` allows us to
# treat new entries similar to adding a new row to a flat table, with
# :py:func:`~hdmf.common.resources.HERD.add_ref` taking care of populating
# the underlying data structures accordingly.
data = Data(name="species", data=['Homo sapiens', 'Mus musculus'])
data.parent = file
herd.add_ref(
file=file,
container=data,
key='Homo sapiens',
entity_id='NCBI_TAXON:9606',
entity_uri='https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606'
)
herd.add_ref(
file=file,
container=data,
key='Mus musculus',
entity_id='NCBI_TAXON:10090',
entity_uri='https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10090'
)
###############################################################################
# Using the add_ref method with an attribute
# ------------------------------------------------------
# It is important to keep in mind that when adding and :py:class:`~hdmf.common.resources.Object` to
# the :py:class:~hdmf.common.resources.ObjectTable, the parent object identified by
# ``Object.object_id`` must be the closest parent to the target object
# (i.e., ``Object.relative_path`` must be the shortest possible path and
# as such cannot contain any objects with a ``data_type`` and associated ``object_id``).
#
# A common example would be with the :py:class:`~hdmf.common.table.DynamicTable` class, which holds
# :py:class:`~hdmf.common.table.VectorData` objects as columns. If we wanted to add an external
# reference on a column from a :py:class:`~hdmf.common.table.DynamicTable`, then we would use the
# column as the object and not the :py:class:`~hdmf.common.table.DynamicTable` (Refer to rule 9).
genotypes = DynamicTable(name='genotypes', description='My genotypes')
genotypes.add_column(name='genotype_name', description="Name of genotypes")
genotypes.add_row(id=0, genotype_name='Rorb')
genotypes.parent = file
herd.add_ref(
file=file,
container=genotypes,
attribute='genotype_name',
key='Rorb',
entity_id='MGI:1346434',
entity_uri='http://www.informatics.jax.org/marker/MGI:1343464'
)
# Note: :py:func:`~hdmf.common.resources.HERD.add_ref` internally resolves the object
# to the closest parent, so that ``herd.add_ref(container=genotypes, attribute='genotype_name')`` and
# ``herd.add_ref(container=genotypes.genotype_name, attribute=None)`` will ultimately both use the ``object_id``
# of the ``genotypes.genotype_name`` :py:class:`~hdmf.common.table.VectorData` column and
# not the object_id of the genotypes table.
###############################################################################
# Using the add_ref method without the file parameter.
# ------------------------------------------------------
# Even though :py:class:`~hdmf.common.resources.File` is required to create/add a new reference,
# the user can omit the file parameter if the :py:class:`~hdmf.common.resources.Object` has a file
# in its parent hierarchy.
col1 = VectorData(
name='Species_Data',
description='species from NCBI and Ensemble',
data=['Homo sapiens', 'Ursus arctos horribilis'],
)
# Create a DynamicTable with this column and set the table parent to the file object created earlier
species = DynamicTable(name='species', description='My species', columns=[col1])
species.parent = file
herd.add_ref(
container=species,
attribute='Species_Data',
key='Ursus arctos horribilis',
entity_id='NCBI_TAXON:116960',
entity_uri='https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id'
)
###############################################################################
# Visualize HERD
# ------------------------------------------------------
# Users can visualize `~hdmf.common.resources.HERD` as a flattened table or
# as separate tables.
# `~hdmf.common.resources.HERD` as a flattened table
herd.to_dataframe()
# The individual interlinked tables:
herd.files.to_dataframe()
herd.objects.to_dataframe()
herd.entities.to_dataframe()
herd.keys.to_dataframe()
herd.object_keys.to_dataframe()
herd.entity_keys.to_dataframe()
###############################################################################
# Using the get_key method
# ------------------------------------------------------
# The :py:func:`~hdmf.common.resources.HERD.get_key`
# method will return a :py:class:`~hdmf.common.resources.Key` object. In the current version of
# :py:class:`~hdmf.common.resources.HERD`, duplicate keys are allowed; however, each key needs a unique
# linking Object. In other words, each combination of (file, container, relative_path, field, key)
# can exist only once in :py:class:`~hdmf.common.resources.HERD`.
# The :py:func:`~hdmf.common.resources.HERD.get_key` method will be able to return the
# :py:class:`~hdmf.common.resources.Key` object if the :py:class:`~hdmf.common.resources.Key` object is unique.
genotype_key_object = herd.get_key(key_name='Rorb')
# If the :py:class:`~hdmf.common.resources.Key` object has a duplicate name, then the user will need
# to provide the unique (file, container, relative_path, field, key) combination.
species_key_object = herd.get_key(file=file,
container=species['Species_Data'],
key_name='Ursus arctos horribilis')
# The :py:func:`~hdmf.common.resources.HERD.get_key` also will check the
# :py:class:`~hdmf.common.resources.Object` for a :py:class:`~hdmf.common.resources.File` along the parent hierarchy
# if the file is not provided as in :py:func:`~hdmf.common.resources.HERD.add_ref`
###############################################################################
# Using the add_ref method with a key_object
# ------------------------------------------------------
# Multiple :py:class:`~hdmf.common.resources.Object` objects can use the same
# :py:class:`~hdmf.common.resources.Key`. To use an existing key when adding
# new entries into :py:class:`~hdmf.common.resources.HERD`, pass the
# :py:class:`~hdmf.common.resources.Key` object instead of the 'key_name' to the
# :py:func:`~hdmf.common.resources.HERD.add_ref` method. If a 'key_name'
# is used, a new :py:class:`~hdmf.common.resources.Key` will be created.
herd.add_ref(
file=file,
container=genotypes,
attribute='genotype_name',
key=genotype_key_object,
entity_id='ENSEMBL:ENSG00000198963',
entity_uri='https://uswest.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000198963'
)
###############################################################################
# Using the get_object_entities
# ------------------------------------------------------
# The :py:class:`~hdmf.common.resources.HERD.get_object_entities` method
# allows the user to retrieve all entities and key information associated with an `Object` in
# the form of a pandas DataFrame.
herd.get_object_entities(file=file,
container=genotypes['genotype_name'],
relative_path='')
###############################################################################
# Using the get_object_type
# ------------------------------------------------------
# The :py:func:`~hdmf.common.resources.HERD.get_object_entities` method
# allows the user to retrieve all entities and key information associated with an `Object` in
# the form of a pandas DataFrame.
herd.get_object_type(object_type='Data')
###############################################################################
# Special Case: Using add_ref with compound data
# ------------------------------------------------
# In most cases, the field is left as an empty string, but if the dataset or attribute
# is a compound data_type, then we can use the 'field' value to differentiate the
# different columns of the dataset. For example, if a dataset has a compound data_type with
# columns/fields 'x', 'y', and 'z', and each
# column/field is associated with different ontologies, then use field='x' to denote that
# 'x' is using the external reference.
# Let's create a new instance of :py:class:`~hdmf.common.resources.HERD`.
herd = HERD()
data = Data(
name='data_name',
data=np.array(
[('Mus musculus', 9, 81.0), ('Homo sapiens', 3, 27.0)],
dtype=[('species', 'U14'), ('age', 'i4'), ('weight', 'f4')]
)
)
data.parent = file
herd.add_ref(
file=file,
container=data,
field='species',
key='Mus musculus',
entity_id='NCBI_TAXON:txid10090',
entity_uri='https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10090'
)
###############################################################################
# Using add_ref_termset
# ------------------------------------------------------
# The :py:func:`~hdmf.common.resources.HERD.add_ref_termset`
# method allows users to not only validate terms, i.e., keys, but also
# add references for an entire datasets, rather than single entries as we saw
# prior with :py:func:`~hdmf.common.resources.HERD.add_ref`.
# :py:func:`~hdmf.common.resources.HERD.add_ref_termset` has many optional fields,
# giving the user a range of control when adding references. Let's see an example.
herd = HERD()
terms = TermSet(term_schema_path=yaml_file)
herd.add_ref_termset(file=file,
container=species,
attribute='Species_Data',
key='Ursus arctos horribilis',
termset=terms)
###############################################################################
# Using add_ref_termset for an entire dataset
# ------------------------------------------------------
# As mentioned above, :py:func:`~hdmf.common.resources.HERD.add_ref_termset`
# supports iteratively validating and populating :py:class:`~hdmf.common.resources.HERD`.
# When populating :py:class:`~hdmf.common.resources.HERD`, users may have some terms
# that are not in the :py:class:`~hdmf.term_set.TermSet`. As a result,
# :py:func:`~hdmf.common.resources.HERD.add_ref_termset` will return all of the missing
# terms in a dictionary. It is up to the user to either add these terms to the
# :py:class:`~hdmf.term_set.TermSet` or remove them from the dataset.
herd = HERD()
terms = TermSet(term_schema_path=yaml_file)
herd.add_ref_termset(file=file,
container=species,
attribute='Species_Data',
termset=terms)
###############################################################################
# Write HERD
# ------------------------------------------------------
# :py:class:`~hdmf.common.resources.HERD` is written as a zip file of
# the individual tables written to tsv.
# The user provides the path, which contains the name of the file.
herd.to_zip(path='./HERD.zip')
###############################################################################
# Read HERD
# ------------------------------------------------------
# Users can read :py:class:`~hdmf.common.resources.HERD` from the zip file
# by providing the path to the file itself.
er_read = HERD.from_zip(path='./HERD.zip')
os.remove('./HERD.zip')
|