1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
.. _extending-standard:
Extending Standards
===================
The following page will discuss how to extend a standard using HDMF.
.. _creating-extensions:
Creating new Extensions
-----------------------
Standards specified using HDMF are designed to be extended. Extension for a standard can be done so using classes
provided in the :py:mod:`hdmf.spec` module. The classes :py:class:`~hdmf.spec.spec.GroupSpec`,
:py:class:`~hdmf.spec.spec.DatasetSpec`, :py:class:`~hdmf.spec.spec.AttributeSpec`, and :py:class:`~hdmf.spec.spec.LinkSpec`
can be used to define custom types.
Attribute Specifications
^^^^^^^^^^^^^^^^^^^^^^^^
Specifying attributes is done with :py:class:`~hdmf.spec.spec.AttributeSpec`.
.. code-block:: python
from hdmf.spec import AttributeSpec
spec = AttributeSpec('bar', 'a value for bar', 'float')
Dataset Specifications
^^^^^^^^^^^^^^^^^^^^^^
Specifying datasets is done with :py:class:`~hdmf.spec.spec.DatasetSpec`.
.. code-block:: python
from hdmf.spec import DatasetSpec
spec = DatasetSpec('A custom data type',
name='qux',
attribute=[
AttributeSpec('baz', 'a value for baz', 'str'),
],
shape=(None, None))
Using datasets to specify tables
++++++++++++++++++++++++++++++++
Tables can be specified using :py:class:`~hdmf.spec.spec.DtypeSpec`. To specify a table, provide a
list of :py:class:`~hdmf.spec.spec.DtypeSpec` objects to the *dtype* argument.
.. code-block:: python
from hdmf.spec import DatasetSpec, DtypeSpec
spec = DatasetSpec('A custom data type',
name='qux',
attribute=[
AttributeSpec('baz', 'a value for baz', 'str'),
],
dtype=[
DtypeSpec('foo', 'column for foo', 'int'),
DtypeSpec('bar', 'a column for bar', 'float')
])
Group Specifications
^^^^^^^^^^^^^^^^^^^^
Specifying groups is done with the :py:class:`~hdmf.spec.spec.GroupSpec` class.
.. code-block:: python
from hdmf.spec import GroupSpec
spec = GroupSpec('A custom data type',
name='quux',
attributes=[...],
datasets=[...],
groups=[...])
Data Type Specifications
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:py:class:`~hdmf.spec.spec.GroupSpec` and :py:class:`~hdmf.spec.spec.DatasetSpec` use the arguments `data_type_inc` and
`data_type_def` for declaring new types and extending existing types. New types are specified by setting the argument
`data_type_def`. New types can extend an existing type by specifying the argument `data_type_inc`.
Create a new type
.. code-block:: python
from hdmf.spec import GroupSpec
# A list of AttributeSpec objects to specify new attributes
addl_attributes = [...]
# A list of DatasetSpec objects to specify new datasets
addl_datasets = [...]
# A list of DatasetSpec objects to specify new groups
addl_groups = [...]
spec = GroupSpec('A custom data type',
attributes=addl_attributes,
datasets=addl_datasets,
groups=addl_groups,
data_type_def='MyNewType')
Extend an existing type
.. code-block:: python
from hdmf.spec import GroupSpec
# A list of AttributeSpec objects to specify additional attributes or attributes to be overridden
addl_attributes = [...]
# A list of DatasetSpec objects to specify additional datasets or datasets to be overridden
addl_datasets = [...]
# A list of GroupSpec objects to specify additional groups or groups to be overridden
addl_groups = [...]
spec = GroupSpec('An extended data type',
attributes=addl_attributes,
datasets=addl_datasets,
groups=addl_groups,
data_type_inc='SpikeEventSeries',
data_type_def='MyExtendedSpikeEventSeries')
Existing types can be instantiated by specifying `data_type_inc` alone.
.. code-block:: python
from hdmf.spec import GroupSpec
# use another GroupSpec object to specify that a group of type
# ElectricalSeries should be present in the new type defined below
addl_groups = [ GroupSpec('An included ElectricalSeries instance',
data_type_inc='ElectricalSeries') ]
spec = GroupSpec('An extended data type',
groups=addl_groups,
data_type_inc='SpikeEventSeries',
data_type_def='MyExtendedSpikeEventSeries')
Datasets can be extended in the same manner (with regard to `data_type_inc` and `data_type_def`,
by using the class :py:class:`~hdmf.spec.spec.DatasetSpec`.
.. _saving-extensions:
Saving Extensions
-----------------
Extensions are used by including them in a loaded namespace. Namespaces and extensions need to be saved to file
for downstream use. The class :py:class:`~hdmf.spec.write.NamespaceBuilder` can be used to create new namespace and
specification files.
Create a new namespace with extensions
.. code-block:: python
from hdmf.spec import GroupSpec, NamespaceBuilder
# create a builder for the namespace
ns_builder = NamespaceBuilder("Extension for use in my laboratory", "mylab", ...)
# create extensions
ext1 = GroupSpec('A custom SpikeEventSeries interface',
attributes=[...]
datasets=[...],
groups=[...],
data_type_inc='SpikeEventSeries',
data_type_def='MyExtendedSpikeEventSeries')
ext2 = GroupSpec('A custom EventDetection interface',
attributes=[...]
datasets=[...],
groups=[...],
data_type_inc='EventDetection',
data_type_def='MyExtendedEventDetection')
# add the extension
ext_source = 'mylab.specs.yaml'
ns_builder.add_spec(ext_source, ext1)
ns_builder.add_spec(ext_source, ext2)
# include an existing namespace - this will include all specifications in that namespace
ns_builder.include_namespace('collab_ns')
# save the namespace and extensions
ns_path = 'mylab.namespace.yaml'
ns_builder.export(ns_path)
.. tip::
Using the API to generate extensions (rather than writing YAML sources directly) helps avoid errors in the specification
(e.g., due to missing required keys or invalid values) and ensure compliance of the extension definition with the
HDMF specification language. It also helps with maintenance of extensions, e.g., if extensions have to be ported to
newer versions of the `specification language <https://schema-language.readthedocs.io/en/latest/>`_
in the future.
.. _incorporating-extensions:
Incorporating extensions
------------------------
HDMF supports extending existing data types.
Extensions must be registered with HDMF to be used for reading and writing of custom data types.
The following code demonstrates how to load custom namespaces.
.. code-block:: python
from hdmf import load_namespaces
namespace_path = 'my_namespace.yaml'
load_namespaces(namespace_path)
.. note::
This will register all namespaces defined in the file ``'my_namespace.yaml'``.
Container : Representing custom data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To read and write custom data, corresponding :py:class:`~hdmf.container.Container` classes must be associated with their
respective specifications. :py:class:`~hdmf.container.Container` classes are associated with their respective
specification using the decorator :py:func:`~hdmf.common.register_class`.
The following code demonstrates how to associate a specification with the :py:class:`~hdmf.container.Container` class
that represents it.
.. code-block:: python
from hdmf.common import register_class
from hdmf.container import Container
@register_class('MyExtension', 'my_namespace')
class MyExtensionContainer(Container):
...
:py:func:`~hdmf.common.register_class` can also be used as a function.
.. code-block:: python
from hdmf.common import register_class
from hdmf.container import Container
class MyExtensionContainer(Container):
...
register_class(data_type='MyExtension', namespace='my_namespace', container_cls=MyExtensionContainer)
If you do not have an :py:class:`~hdmf.container.Container` subclass to associate with your extension specification,
a dynamically created class is created by default.
To use the dynamic class, you will need to retrieve the class object using the function :py:func:`~hdmf.common.get_class`.
Once you have retrieved the class object, you can use it just like you would a statically defined class.
.. code-block:: python
from hdmf.common import get_class
MyExtensionContainer = get_class('my_namespace', 'MyExtension')
my_ext_inst = MyExtensionContainer(...)
If using iPython, you can access documentation for the class's constructor using the help command.
ObjectMapper : Customizing the mapping between Container and the Spec
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If your :py:class:`~hdmf.container.Container` extension requires custom mapping of the
:py:class:`~hdmf.container.Container` class for reading and writing, you will need to implement and register a custom
:py:class:`~hdmf.build.objectmapper.ObjectMapper`.
:py:class:`~hdmf.build.objectmapper.ObjectMapper` extensions are registered with the decorator
:py:func:`~hdmf.common.register_map`.
.. code-block:: python
from hdmf.common import register_map
from hdmf.build import ObjectMapper
@register_map(MyExtensionContainer)
class MyExtensionMapper(ObjectMapper)
...
:py:func:`~hdmf.common.register_map` can also be used as a function.
.. code-block:: python
from hdmf.common import register_map
from hdmf.build import ObjectMapper
class MyExtensionMapper(ObjectMapper)
...
register_map(MyExtensionContainer, MyExtensionMapper)
.. tip::
ObjectMappers allow you to customize how objects in the spec are mapped to attributes of your Container in
Python. This is useful, e.g., in cases where you want to customize the default mapping.
For an overview of the concepts of containers, spec, builders, object mappers in HDMF see also
:ref:`software-architecture`
.. _documenting-extensions:
Documenting Extensions
----------------------
Coming soon!
Further Reading
---------------
* **Specification Language:** For a detailed overview of the specification language itself see https://hdmf-schema-language.readthedocs.io/en/latest/index.html
|