1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
import numpy as np
from hdmf.data_utils import DataChunkIterator, DataChunk
from hdmf.testing import TestCase
class DataChunkIteratorTests(TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_none_iter(self):
"""Test that DataChunkIterator __init__ sets defaults correctly and all chunks and recommended shapes are None.
"""
dci = DataChunkIterator(dtype=np.dtype('int'))
self.assertIsNone(dci.maxshape)
self.assertEqual(dci.dtype, np.dtype('int'))
self.assertEqual(dci.buffer_size, 1)
self.assertEqual(dci.iter_axis, 0)
count = 0
for chunk in dci:
pass
self.assertEqual(count, 0)
self.assertIsNone(dci.recommended_data_shape())
self.assertIsNone(dci.recommended_chunk_shape())
def test_list_none(self):
"""Test that DataChunkIterator has no dtype or chunks when given a list of None.
"""
a = [None, None, None]
with self.assertRaisesWith(Exception, 'Data type could not be determined. Please specify dtype in '
'DataChunkIterator init.'):
DataChunkIterator(a)
def test_list_none_dtype(self):
"""Test that DataChunkIterator has the passed-in dtype and no chunks when given a list of None.
"""
a = [None, None, None]
dci = DataChunkIterator(a, dtype=np.dtype('int'))
self.assertTupleEqual(dci.maxshape, (3,))
self.assertEqual(dci.dtype, np.dtype('int'))
count = 0
for chunk in dci:
pass
self.assertEqual(count, 0)
self.assertTupleEqual(dci.recommended_data_shape(), (3,))
self.assertIsNone(dci.recommended_chunk_shape())
def test_numpy_iter_unbuffered_first_axis(self):
"""Test DataChunkIterator with numpy data, no buffering, and iterating on the first dimension.
"""
a = np.arange(30).reshape(5, 2, 3)
dci = DataChunkIterator(data=a, buffer_size=1)
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.shape, (1, 2, 3))
count += 1
self.assertEqual(count, 5)
self.assertTupleEqual(dci.recommended_data_shape(), a.shape)
self.assertIsNone(dci.recommended_chunk_shape())
def test_numpy_iter_unbuffered_middle_axis(self):
"""Test DataChunkIterator with numpy data, no buffering, and iterating on a middle dimension.
"""
a = np.arange(30).reshape(5, 2, 3)
dci = DataChunkIterator(data=a, buffer_size=1, iter_axis=1)
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.shape, (5, 1, 3))
count += 1
self.assertEqual(count, 2)
self.assertTupleEqual(dci.recommended_data_shape(), a.shape)
self.assertIsNone(dci.recommended_chunk_shape())
def test_numpy_iter_unbuffered_last_axis(self):
"""Test DataChunkIterator with numpy data, no buffering, and iterating on the last dimension.
"""
a = np.arange(30).reshape(5, 2, 3)
dci = DataChunkIterator(data=a, buffer_size=1, iter_axis=2)
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.shape, (5, 2, 1))
count += 1
self.assertEqual(count, 3)
self.assertTupleEqual(dci.recommended_data_shape(), a.shape)
self.assertIsNone(dci.recommended_chunk_shape())
def test_numpy_iter_buffered_first_axis(self):
"""Test DataChunkIterator with numpy data, buffering, and iterating on the first dimension.
"""
a = np.arange(30).reshape(5, 2, 3)
dci = DataChunkIterator(data=a, buffer_size=2)
count = 0
for chunk in dci:
if count < 2:
self.assertTupleEqual(chunk.shape, (2, 2, 3))
else:
self.assertTupleEqual(chunk.shape, (1, 2, 3))
count += 1
self.assertEqual(count, 3)
self.assertTupleEqual(dci.recommended_data_shape(), a.shape)
self.assertIsNone(dci.recommended_chunk_shape())
def test_numpy_iter_buffered_middle_axis(self):
"""Test DataChunkIterator with numpy data, buffering, and iterating on a middle dimension.
"""
a = np.arange(45).reshape(5, 3, 3)
dci = DataChunkIterator(data=a, buffer_size=2, iter_axis=1)
count = 0
for chunk in dci:
if count < 1:
self.assertTupleEqual(chunk.shape, (5, 2, 3))
else:
self.assertTupleEqual(chunk.shape, (5, 1, 3))
count += 1
self.assertEqual(count, 2)
self.assertTupleEqual(dci.recommended_data_shape(), a.shape)
self.assertIsNone(dci.recommended_chunk_shape())
def test_numpy_iter_buffered_last_axis(self):
"""Test DataChunkIterator with numpy data, buffering, and iterating on the last dimension.
"""
a = np.arange(30).reshape(5, 2, 3)
dci = DataChunkIterator(data=a, buffer_size=2, iter_axis=2)
count = 0
for chunk in dci:
if count < 1:
self.assertTupleEqual(chunk.shape, (5, 2, 2))
else:
self.assertTupleEqual(chunk.shape, (5, 2, 1))
count += 1
self.assertEqual(count, 2)
self.assertTupleEqual(dci.recommended_data_shape(), a.shape)
self.assertIsNone(dci.recommended_chunk_shape())
def test_numpy_iter_unmatched_buffer_size(self):
a = np.arange(10)
dci = DataChunkIterator(data=a, buffer_size=3)
self.assertTupleEqual(dci.maxshape, a.shape)
self.assertEqual(dci.dtype, a.dtype)
count = 0
for chunk in dci:
if count < 3:
self.assertTupleEqual(chunk.data.shape, (3,))
else:
self.assertTupleEqual(chunk.data.shape, (1,))
count += 1
self.assertEqual(count, 4)
self.assertTupleEqual(dci.recommended_data_shape(), a.shape)
self.assertIsNone(dci.recommended_chunk_shape())
def test_standard_iterator_unbuffered(self):
dci = DataChunkIterator(data=range(10), buffer_size=1)
self.assertEqual(dci.dtype, np.dtype(int))
self.assertTupleEqual(dci.maxshape, (10,))
self.assertTupleEqual(dci.recommended_data_shape(), (10,)) # Test before and after iteration
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.data.shape, (1,))
count += 1
self.assertEqual(count, 10)
self.assertTupleEqual(dci.recommended_data_shape(), (10,)) # Test before and after iteration
self.assertIsNone(dci.recommended_chunk_shape())
def test_standard_iterator_unmatched_buffersized(self):
dci = DataChunkIterator(data=range(10), buffer_size=3)
self.assertEqual(dci.dtype, np.dtype(int))
self.assertTupleEqual(dci.maxshape, (10,))
self.assertIsNone(dci.recommended_chunk_shape())
self.assertTupleEqual(dci.recommended_data_shape(), (10,)) # Test before and after iteration
count = 0
for chunk in dci:
if count < 3:
self.assertTupleEqual(chunk.data.shape, (3,))
else:
self.assertTupleEqual(chunk.data.shape, (1,))
count += 1
self.assertEqual(count, 4)
self.assertTupleEqual(dci.recommended_data_shape(), (10,)) # Test before and after iteration
def test_multidimensional_list_first_axis(self):
"""Test DataChunkIterator with multidimensional list data, no buffering, and iterating on the first dimension.
"""
a = np.arange(30).reshape(5, 2, 3).tolist()
dci = DataChunkIterator(a)
self.assertTupleEqual(dci.maxshape, (5, 2, 3))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.data.shape, (1, 2, 3))
count += 1
self.assertEqual(count, 5)
self.assertTupleEqual(dci.recommended_data_shape(), (5, 2, 3))
self.assertIsNone(dci.recommended_chunk_shape())
def test_multidimensional_list_middle_axis(self):
"""Test DataChunkIterator with multidimensional list data, no buffering, and iterating on a middle dimension.
"""
a = np.arange(30).reshape(5, 2, 3).tolist()
warn_msg = ('Iterating over an axis other than the first dimension of list or tuple data '
'involves converting the data object to a numpy ndarray, which may incur a computational '
'cost.')
with self.assertWarnsWith(UserWarning, warn_msg):
dci = DataChunkIterator(a, iter_axis=1)
self.assertTupleEqual(dci.maxshape, (5, 2, 3))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.data.shape, (5, 1, 3))
count += 1
self.assertEqual(count, 2)
self.assertTupleEqual(dci.recommended_data_shape(), (5, 2, 3))
self.assertIsNone(dci.recommended_chunk_shape())
def test_multidimensional_list_last_axis(self):
"""Test DataChunkIterator with multidimensional list data, no buffering, and iterating on the last dimension.
"""
a = np.arange(30).reshape(5, 2, 3).tolist()
warn_msg = ('Iterating over an axis other than the first dimension of list or tuple data '
'involves converting the data object to a numpy ndarray, which may incur a computational '
'cost.')
with self.assertWarnsWith(UserWarning, warn_msg):
dci = DataChunkIterator(a, iter_axis=2)
self.assertTupleEqual(dci.maxshape, (5, 2, 3))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.data.shape, (5, 2, 1))
count += 1
self.assertEqual(count, 3)
self.assertTupleEqual(dci.recommended_data_shape(), (5, 2, 3))
self.assertIsNone(dci.recommended_chunk_shape())
def test_maxshape(self):
a = np.arange(30).reshape(5, 2, 3)
aiter = iter(a)
daiter = DataChunkIterator.from_iterable(aiter, buffer_size=2)
self.assertEqual(daiter.maxshape, (None, 2, 3))
def test_dtype(self):
a = np.arange(30, dtype='int32').reshape(5, 2, 3)
aiter = iter(a)
daiter = DataChunkIterator.from_iterable(aiter, buffer_size=2)
self.assertEqual(daiter.dtype, a.dtype)
def test_sparse_data_buffer_aligned(self):
a = [1, 2, 3, 4, None, None, 7, 8, None, None]
dci = DataChunkIterator(a, buffer_size=2)
self.assertTupleEqual(dci.maxshape, (10,))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertTupleEqual(chunk.data.shape, (2,))
self.assertEqual(len(chunk.selection), 1)
self.assertEqual(chunk.selection[0], slice(chunk.data[0] - 1, chunk.data[1]))
count += 1
self.assertEqual(count, 3)
self.assertTupleEqual(dci.recommended_data_shape(), (10,))
self.assertIsNone(dci.recommended_chunk_shape())
def test_sparse_data_buffer_notaligned(self):
a = [1, 2, 3, None, None, None, None, 8, 9, 10]
dci = DataChunkIterator(a, buffer_size=2)
self.assertTupleEqual(dci.maxshape, (10,))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertEqual(len(chunk.selection), 1)
if count == 0: # [1, 2]
self.assertListEqual(chunk.data.tolist(), [1, 2])
self.assertEqual(chunk.selection[0], slice(chunk.data[0] - 1, chunk.data[1]))
elif count == 1: # [3, None]
self.assertListEqual(chunk.data.tolist(), [3, ])
self.assertEqual(chunk.selection[0], slice(chunk.data[0] - 1, chunk.data[0]))
elif count == 2: # [8, 9]
self.assertListEqual(chunk.data.tolist(), [8, 9])
self.assertEqual(chunk.selection[0], slice(chunk.data[0] - 1, chunk.data[1]))
else: # count == 3, [10]
self.assertListEqual(chunk.data.tolist(), [10, ])
self.assertEqual(chunk.selection[0], slice(chunk.data[0] - 1, chunk.data[0]))
count += 1
self.assertEqual(count, 4)
self.assertTupleEqual(dci.recommended_data_shape(), (10,))
self.assertIsNone(dci.recommended_chunk_shape())
def test_start_with_none(self):
a = [None, None, 3]
dci = DataChunkIterator(a, buffer_size=2)
self.assertTupleEqual(dci.maxshape, (3,))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertListEqual(chunk.data.tolist(), [3])
self.assertEqual(len(chunk.selection), 1)
self.assertEqual(chunk.selection[0], slice(2, 3))
count += 1
self.assertEqual(count, 1)
self.assertTupleEqual(dci.recommended_data_shape(), (3,))
self.assertIsNone(dci.recommended_chunk_shape())
def test_list_scalar(self):
a = [3]
dci = DataChunkIterator(a, buffer_size=2)
self.assertTupleEqual(dci.maxshape, (1,))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertListEqual(chunk.data.tolist(), [3])
self.assertEqual(len(chunk.selection), 1)
self.assertEqual(chunk.selection[0], slice(0, 1))
count += 1
self.assertEqual(count, 1)
self.assertTupleEqual(dci.recommended_data_shape(), (1,))
self.assertIsNone(dci.recommended_chunk_shape())
def test_list_numpy_scalar(self):
a = np.array([3])
dci = DataChunkIterator(a, buffer_size=2)
self.assertTupleEqual(dci.maxshape, (1,))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertListEqual(chunk.data.tolist(), [3])
self.assertEqual(len(chunk.selection), 1)
self.assertEqual(chunk.selection[0], slice(0, 1))
count += 1
self.assertEqual(count, 1)
self.assertTupleEqual(dci.recommended_data_shape(), (1,))
self.assertIsNone(dci.recommended_chunk_shape())
def test_set_maxshape(self):
a = np.array([3])
dci = DataChunkIterator(a, maxshape=(5, 2, 3), buffer_size=2)
self.assertTupleEqual(dci.maxshape, (5, 2, 3))
self.assertEqual(dci.dtype, np.dtype(int))
count = 0
for chunk in dci:
self.assertListEqual(chunk.data.tolist(), [3])
self.assertTupleEqual(chunk.selection, (slice(0, 1), slice(None), slice(None)))
count += 1
self.assertEqual(count, 1)
self.assertTupleEqual(dci.recommended_data_shape(), (5, 2, 3))
self.assertIsNone(dci.recommended_chunk_shape())
def test_custom_iter_first_axis(self):
def my_iter():
count = 0
a = np.arange(30).reshape(5, 2, 3)
while count < a.shape[0]:
val = a[count, :, :]
count = count + 1
yield val
return
dci = DataChunkIterator(data=my_iter(), buffer_size=2)
count = 0
for chunk in dci:
if count < 2:
self.assertTupleEqual(chunk.shape, (2, 2, 3))
else:
self.assertTupleEqual(chunk.shape, (1, 2, 3))
count += 1
self.assertEqual(count, 3)
# self.assertTupleEqual(dci.recommended_data_shape(), (2, 2, 3))
self.assertIsNone(dci.recommended_chunk_shape())
def test_custom_iter_middle_axis(self):
def my_iter():
count = 0
a = np.arange(45).reshape(5, 3, 3)
while count < a.shape[1]:
val = a[:, count, :]
count = count + 1
yield val
return
dci = DataChunkIterator(data=my_iter(), buffer_size=2, iter_axis=1)
count = 0
for chunk in dci:
if count < 1:
self.assertTupleEqual(chunk.shape, (5, 2, 3))
else:
self.assertTupleEqual(chunk.shape, (5, 1, 3))
count += 1
self.assertEqual(count, 2)
# self.assertTupleEqual(dci.recommended_data_shape(), (5, 2, 3))
self.assertIsNone(dci.recommended_chunk_shape())
def test_custom_iter_last_axis(self):
def my_iter():
count = 0
a = np.arange(30).reshape(5, 2, 3)
while count < a.shape[2]:
val = a[:, :, count]
count = count + 1
yield val
return
dci = DataChunkIterator(data=my_iter(), buffer_size=2, iter_axis=2)
count = 0
for chunk in dci:
if count < 1:
self.assertTupleEqual(chunk.shape, (5, 2, 2))
else:
self.assertTupleEqual(chunk.shape, (5, 2, 1))
count += 1
self.assertEqual(count, 2)
# self.assertTupleEqual(dci.recommended_data_shape(), (5, 2, 2))
self.assertIsNone(dci.recommended_chunk_shape())
def test_custom_iter_mismatched_axis(self):
def my_iter():
count = 0
a = np.arange(30).reshape(5, 2, 3)
while count < a.shape[2]:
val = a[:, :, count]
count = count + 1
yield val
return
# iterator returns slices of size (5, 2)
# because iter_axis is by default 0, these chunks will be placed along the first dimension
dci = DataChunkIterator(data=my_iter(), buffer_size=2)
count = 0
for chunk in dci:
if count < 1:
self.assertTupleEqual(chunk.shape, (2, 5, 2))
else:
self.assertTupleEqual(chunk.shape, (1, 5, 2))
count += 1
self.assertEqual(count, 2)
# self.assertTupleEqual(dci.recommended_data_shape(), (5, 2, 2))
self.assertIsNone(dci.recommended_chunk_shape())
class DataChunkTests(TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_len_operator_no_data(self):
temp = DataChunk()
self.assertEqual(len(temp), 0)
def test_len_operator_with_data(self):
temp = DataChunk(np.arange(10).reshape(5, 2))
self.assertEqual(len(temp), 5)
def test_dtype(self):
temp = DataChunk(np.arange(10).astype('int'))
temp_dtype = temp.dtype
self.assertEqual(temp_dtype, np.dtype('int'))
def test_astype(self):
temp1 = DataChunk(np.arange(10).reshape(5, 2))
temp2 = temp1.astype('float32')
self.assertEqual(temp2.dtype, np.dtype('float32'))
|