File: test_core_GenericDataChunkIterator.py

package info (click to toggle)
hdmf 3.14.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,372 kB
  • sloc: python: 34,738; makefile: 303; sh: 35
file content (463 lines) | stat: -rw-r--r-- 20,045 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import unittest
import pickle
import numpy as np
from pathlib import Path
from tempfile import mkdtemp
from shutil import rmtree
from typing import Tuple, Iterable, Callable, Union
from sys import version_info

import h5py
from numpy.testing import assert_array_equal

from hdmf.data_utils import GenericDataChunkIterator
from hdmf.testing import TestCase

try:
    import tqdm  # noqa: F401
    TQDM_INSTALLED = True
except ImportError:
    TQDM_INSTALLED = False


class PickleableNumpyArrayDataChunkIterator(GenericDataChunkIterator):
    def __init__(self, array: np.ndarray, **kwargs):
        self.array = array
        self._kwargs = kwargs
        super().__init__(**kwargs)

    def _get_data(self, selection) -> np.ndarray:
        return self.array[selection]

    def _get_maxshape(self) -> Tuple[int, ...]:
        return self.array.shape

    def _get_dtype(self) -> np.dtype:
        return self.array.dtype

    def _to_dict(self) -> dict:
        return dict(array=pickle.dumps(self.array), kwargs=self._kwargs)

    @staticmethod
    def _from_dict(dictionary: dict) -> Callable:
        array = pickle.loads(dictionary["array"])
        return PickleableNumpyArrayDataChunkIterator(array=array, **dictionary["kwargs"])


class GenericDataChunkIteratorTests(TestCase):
    class TestNumpyArrayDataChunkIterator(GenericDataChunkIterator):
        def __init__(self, array: np.ndarray, **kwargs):
            self.array = array
            super().__init__(**kwargs)

        def _get_data(self, selection) -> np.ndarray:
            return self.array[selection]

        def _get_maxshape(self) -> Tuple[int, ...]:
            return self.array.shape

        def _get_dtype(self) -> np.dtype:
            return self.array.dtype

    class TestNumpyArrayDataChunkIteratorWithNumpyDtypeShape(GenericDataChunkIterator):
        def __init__(self, array: np.ndarray, **kwargs):
            self.array = array
            super().__init__(**kwargs)

        def _get_data(self, selection) -> np.ndarray:
            return self.array[selection]

        def _get_maxshape(self) -> Tuple[np.uint64, ...]:  # Undesirable return type, but can be handled
            return tuple(np.uint64(x) for x in self.array.shape)

        def _get_dtype(self) -> np.dtype:
            return self.array.dtype

    @classmethod
    def setUpClass(cls):
        cls.test_dir = Path(mkdtemp())
        cls.test_array = np.empty(shape=(2000, 384), dtype="int16")

    @classmethod
    def tearDownClass(cls):
        rmtree(cls.test_dir)

    def check_first_data_chunk_call(self, expected_selection, iterator_options):
        test = self.TestNumpyArrayDataChunkIterator(array=self.test_array, **iterator_options)
        first_data_chunk = next(test)
        self.assertEqual(first_data_chunk.selection, expected_selection)
        np.testing.assert_array_equal(first_data_chunk, self.test_array[expected_selection])

    def check_direct_hdf5_write(self, iterator_options):
        iterator = self.TestNumpyArrayDataChunkIterator(
            array=self.test_array, **iterator_options
        )
        with h5py.File(name=self.test_dir / "test_generic_iterator_array.hdf5", mode="w") as f:
            dset = f.create_dataset(
                name="test", shape=self.test_array.shape, dtype="int16", chunks=iterator.chunk_shape
            )
            for chunk in iterator:
                dset[chunk.selection] = chunk.data
            np.testing.assert_array_equal(np.array(dset), self.test_array)
            self.assertEqual(dset.chunks, iterator.chunk_shape)

    def check_all_of_iterable_is_python_int(self, iterable: Iterable):
        assert all(
            tuple(  # Easier to visualize failures in pytest with tuple vs. generator
                isinstance(x, int) for x in iterable
            )
        )

    def test_abstract_assertions(self):
        class TestGenericDataChunkIterator(GenericDataChunkIterator):
            pass

        with self.assertRaisesWith(
            exc_type=TypeError,
            exc_msg=(
                "Can't instantiate abstract class TestGenericDataChunkIterator with abstract methods "
                "_get_data, _get_dtype, _get_maxshape"
            ) if version_info < (3, 12) else (
                "Can't instantiate abstract class TestGenericDataChunkIterator without an "
                "implementation for abstract methods '_get_data', '_get_dtype', '_get_maxshape'"
            ),
        ):
            TestGenericDataChunkIterator()

    def test_joint_option_assertions(self):
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg="Only one of 'buffer_gb' or 'buffer_shape' can be specified!",
        ):
            self.TestNumpyArrayDataChunkIterator(array=self.test_array, buffer_shape=(2000, 384), buffer_gb=1)

        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg="Only one of 'chunk_mb' or 'chunk_shape' can be specified!",
        ):
            self.TestNumpyArrayDataChunkIterator(array=self.test_array, chunk_shape=(1580, 316), chunk_mb=1)

        chunk_shape = (2001, 384)
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=(
                f"Some dimensions of chunk_shape ({chunk_shape}) exceed the "
                f"data dimensions ((2000, 384))!"
            ),
        ):
            self.TestNumpyArrayDataChunkIterator(
                array=self.test_array, chunk_shape=chunk_shape
            )

        buffer_shape = (1000, 192)
        chunk_shape = (100, 384)
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=(
                f"Some dimensions of chunk_shape ({chunk_shape}) exceed the "
                f"buffer shape ({buffer_shape})!"
            ),
        ):
            self.TestNumpyArrayDataChunkIterator(
                array=self.test_array, buffer_shape=buffer_shape, chunk_shape=chunk_shape
            )

        buffer_shape = (1000, 192)
        chunk_shape = (1000, 5)
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=(
                f"Some dimensions of chunk_shape ({chunk_shape}) do not evenly divide the "
                f"buffer shape ({buffer_shape})!"
            ),
        ):
            self.TestNumpyArrayDataChunkIterator(
                array=self.test_array, buffer_shape=buffer_shape, chunk_shape=chunk_shape
            )

    def test_buffer_option_assertion_negative_buffer_gb(self):
        buffer_gb = -1
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=f"buffer_gb ({buffer_gb}) must be greater than zero!"
        ):
            self.TestNumpyArrayDataChunkIterator(array=self.test_array, buffer_gb=buffer_gb)

    def test_buffer_option_assertion_exceed_maxshape(self):
        buffer_shape = (2001, 384)
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=(
                f"Some dimensions of buffer_shape ({buffer_shape}) exceed the data "
                f"dimensions ({self.test_array.shape})!"
            )
        ):
            self.TestNumpyArrayDataChunkIterator(array=self.test_array, buffer_shape=buffer_shape)

    def test_buffer_option_assertion_negative_shape(self):
        buffer_shape = (-1, 384)
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=f"Some dimensions of buffer_shape ({buffer_shape}) are less than zero!"
        ):
            self.TestNumpyArrayDataChunkIterator(array=self.test_array, buffer_shape=buffer_shape)

    def test_chunk_option_assertion_negative_chunk_mb(self):
        chunk_mb = -1
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=f"chunk_mb ({chunk_mb}) must be greater than zero!"
        ):
            self.TestNumpyArrayDataChunkIterator(array=self.test_array, chunk_mb=chunk_mb)

    def test_chunk_option_assertion_negative_shape(self):
        chunk_shape = (-1, 384)
        with self.assertRaisesWith(
            exc_type=AssertionError,
            exc_msg=f"Some dimensions of chunk_shape ({chunk_shape}) are less than zero!"
        ):
            self.TestNumpyArrayDataChunkIterator(array=self.test_array, chunk_shape=chunk_shape)

    @unittest.skipIf(not TQDM_INSTALLED, "optional tqdm module is not installed")
    def test_progress_bar_assertion(self):
        with self.assertWarnsWith(
            warn_type=UserWarning,
            exc_msg="Option 'total' in 'progress_bar_options' is not allowed to be over-written! Ignoring."
        ):
            _ = self.TestNumpyArrayDataChunkIterator(
                array=self.test_array,
                display_progress=True,
                progress_bar_options=dict(total=5),
            )

    def test_private_to_dict_assertion(self):
        with self.assertRaisesWith(
            exc_type=NotImplementedError,
            exc_msg="The `._to_dict()` method for pickling has not been defined for this DataChunkIterator!"
        ):
            iterator = self.TestNumpyArrayDataChunkIterator(array=self.test_array)
            _ = iterator._to_dict()

    def test_private_from_dict_assertion(self):
        with self.assertRaisesWith(
            exc_type=NotImplementedError,
            exc_msg="The `._from_dict()` method for pickling has not been defined for this DataChunkIterator!"
        ):
            _ = self.TestNumpyArrayDataChunkIterator._from_dict(dict())

    def test_direct_pickle_assertion(self):
        with self.assertRaisesWith(
            exc_type=NotImplementedError,
            exc_msg="The `._to_dict()` method for pickling has not been defined for this DataChunkIterator!"
        ):
            iterator = self.TestNumpyArrayDataChunkIterator(array=self.test_array)
            _ = pickle.dumps(iterator)

    def test_maxshape_attribute_contains_int_type(self):
        """Motivated by issues described in https://github.com/hdmf-dev/hdmf/pull/780 & 781 regarding return types."""
        self.check_all_of_iterable_is_python_int(
            iterable=self.TestNumpyArrayDataChunkIterator(array=self.test_array).maxshape
        )

    def test_automated_buffer_shape_attribute_int_type(self):
        """Motivated by issues described in https://github.com/hdmf-dev/hdmf/pull/780 & 781 regarding return types."""
        self.check_all_of_iterable_is_python_int(
            iterable=self.TestNumpyArrayDataChunkIterator(array=self.test_array).buffer_shape
        )

    def test_automated_chunk_shape_attribute_int_type(self):
        """Motivated by issues described in https://github.com/hdmf-dev/hdmf/pull/780 & 781 regarding return types."""
        self.check_all_of_iterable_is_python_int(
            iterable=self.TestNumpyArrayDataChunkIterator(array=self.test_array).chunk_shape
        )

    def test_np_dtype_maxshape_attribute_int_type(self):
        """Motivated by issues described in https://github.com/hdmf-dev/hdmf/pull/780 & 781 regarding return types."""
        self.check_all_of_iterable_is_python_int(
            iterable=self.TestNumpyArrayDataChunkIteratorWithNumpyDtypeShape(array=self.test_array).maxshape
        )

    def test_manual_buffer_shape_attribute_int_type(self):
        """Motivated by issues described in https://github.com/hdmf-dev/hdmf/pull/780 & 781 regarding return types."""
        self.check_all_of_iterable_is_python_int(
            iterable=self.TestNumpyArrayDataChunkIterator(
                array=self.test_array,
                chunk_shape=(np.uint64(100), np.uint64(2)),
                buffer_shape=(np.uint64(200), np.uint64(4)),
            ).buffer_shape
        )

    def test_manual_chunk_shape_attribute_int_type(self):
        """Motivated by issues described in https://github.com/hdmf-dev/hdmf/pull/780 & 781 regarding return types."""
        self.check_all_of_iterable_is_python_int(
            iterable=self.TestNumpyArrayDataChunkIterator(
                array=self.test_array,
                chunk_shape=(np.uint64(100), np.uint64(2))
            ).chunk_shape
        )

    def test_selection_slices_int_type(self):
        """Motivated by issues described in https://github.com/hdmf-dev/hdmf/pull/780 & 781 regarding return types."""
        iterator = self.TestNumpyArrayDataChunkIterator(array=self.test_array)
        first_chunk = next(iterator)
        stop_0 = first_chunk.selection[0].stop
        start_0 = first_chunk.selection[0].start
        stop_1 = first_chunk.selection[1].stop
        start_1 = first_chunk.selection[1].start

        self.check_all_of_iterable_is_python_int(iterable=(stop_0, start_0, stop_1, start_1))

    def test_num_buffers(self):
        buffer_shape = (950, 190)
        chunk_shape = (50, 38)
        expected_num_buffers = 9

        test = self.TestNumpyArrayDataChunkIterator(
            array=self.test_array, buffer_shape=buffer_shape, chunk_shape=chunk_shape
        )
        self.assertEqual(first=test.num_buffers, second=expected_num_buffers)

    def test_numpy_array_chunk_iterator(self):
        iterator_options = dict()
        self.check_first_data_chunk_call(
            expected_selection=(slice(0, 2000), slice(0, 384)), iterator_options=iterator_options
        )
        self.check_direct_hdf5_write(iterator_options=iterator_options)

    def test_buffer_shape_option(self):
        expected_buffer_shape = (1580, 316)
        iterator_options = dict(buffer_shape=expected_buffer_shape, chunk_mb=1.0)
        self.check_first_data_chunk_call(
            expected_selection=tuple([slice(0, buffer_shape_axis) for buffer_shape_axis in expected_buffer_shape]),
            iterator_options=iterator_options,
        )
        self.check_direct_hdf5_write(iterator_options=iterator_options)

    def test_buffer_gb_option(self):
        # buffer is smaller than chunk; should collapse to chunk shape
        resulting_buffer_shape = (1580, 316)
        iterator_options = dict(buffer_gb=0.0005, chunk_mb=1.0)
        self.check_first_data_chunk_call(
            expected_selection=tuple(
                [
                    slice(0, buffer_shape_axis)
                    for buffer_shape_axis in resulting_buffer_shape
                ]
            ),
            iterator_options=iterator_options,
        )
        self.check_direct_hdf5_write(iterator_options=iterator_options)

        # buffer is larger than total data size; should collapse to maxshape
        resulting_buffer_shape = (2000, 384)
        for buffer_gb_input_dtype_pass in [2, 2.0]:
            iterator_options = dict(buffer_gb=2)
            self.check_first_data_chunk_call(
                expected_selection=tuple(
                    [
                        slice(0, buffer_shape_axis)
                        for buffer_shape_axis in resulting_buffer_shape
                    ]
                ),
                iterator_options=iterator_options,
            )
            self.check_direct_hdf5_write(iterator_options=iterator_options)

    def test_chunk_shape_option(self):
        test_chunk_shape = (1580, 316)
        iterator = self.TestNumpyArrayDataChunkIterator(array=self.test_array, chunk_shape=test_chunk_shape)
        self.assertEqual(iterator.chunk_shape, test_chunk_shape)

    def test_chunk_mb_option(self):
        expected_chunk_shape = (1115, 223)
        iterator = self.TestNumpyArrayDataChunkIterator(array=self.test_array, chunk_mb=0.5)
        self.assertEqual(iterator.chunk_shape, expected_chunk_shape)

    def test_chunk_mb_option_larger_than_total_size(self):
        """Chunk is larger than total data size; should collapse to maxshape."""
        expected_chunk_shape = (2000, 384)
        iterator = self.TestNumpyArrayDataChunkIterator(array=self.test_array, chunk_mb=2)
        self.assertEqual(iterator.chunk_shape, expected_chunk_shape)

    def test_chunk_mb_option_while_condition(self):
        """Test to evoke while condition of default shaping method."""
        expected_chunk_shape = (2, 79, 79)
        special_array = np.random.randint(low=-(2 ** 15), high=2 ** 15 - 1, size=(2, 2000, 2000), dtype="int16")
        iterator = self.TestNumpyArrayDataChunkIterator(array=special_array, chunk_mb=1.0)
        self.assertEqual(iterator.chunk_shape, expected_chunk_shape)

    def test_chunk_mb_option_while_condition_unit_maxshape_axis(self):
        """Test to evoke while condition of default shaping method."""
        expected_chunk_shape = (1, 79, 79)
        special_array = np.random.randint(low=-(2 ** 15), high=2 ** 15 - 1, size=(1, 2000, 2000), dtype="int16")
        iterator = self.TestNumpyArrayDataChunkIterator(array=special_array, chunk_mb=1.0)
        self.assertEqual(iterator.chunk_shape, expected_chunk_shape)

    @unittest.skipIf(not TQDM_INSTALLED, "optional tqdm module is not installed")
    def test_progress_bar(self):
        out_text_file = self.test_dir / "test_progress_bar.txt"
        desc = "Testing progress bar..."
        with open(file=out_text_file, mode="w") as file:
            iterator = self.TestNumpyArrayDataChunkIterator(
                array=self.test_array, display_progress=True, progress_bar_options=dict(file=file, desc=desc)
            )
            j = 0
            for buffer in iterator:
                j += 1  # dummy operation; must be silent for proper updating of bar
        with open(file=out_text_file, mode="r") as file:
            first_line = file.read()
            self.assertIn(member=desc, container=first_line)

    @unittest.skipIf(not TQDM_INSTALLED, "optional tqdm module is not installed")
    def test_progress_bar_class(self):

        class MyCustomProgressBar(tqdm.tqdm):
            def update(self, n: int = 1) -> Union[bool, None]:
                displayed = super().update(n)
                print(f"Custom injection on step {n}") # noqa: T201

                return displayed

        out_text_file = self.test_dir / "test_progress_bar_class.txt"
        desc = "Testing progress bar..."
        with open(file=out_text_file, mode="w") as file:
            iterator = self.TestNumpyArrayDataChunkIterator(
                array=self.test_array,
                display_progress=True,
                progress_bar_class=MyCustomProgressBar,
                progress_bar_options=dict(file=file, desc=desc),
            )
            j = 0
            for buffer in iterator:
                j += 1  # dummy operation; must be silent for proper updating of bar
        with open(file=out_text_file, mode="r") as file:
            first_line = file.read()
            self.assertIn(member=desc, container=first_line)

    @unittest.skipIf(not TQDM_INSTALLED, "optional tqdm module is installed")
    def test_progress_bar_no_options(self):
        dci = self.TestNumpyArrayDataChunkIterator(array=self.test_array, display_progress=True)
        self.assertIsNotNone(dci.progress_bar)
        self.assertTrue(dci.display_progress)

    @unittest.skipIf(TQDM_INSTALLED, "optional tqdm module is not installed")
    def test_tqdm_not_installed(self):
        with self.assertWarnsWith(
            warn_type=UserWarning,
            exc_msg=("You must install tqdm to use the progress bar feature (pip install tqdm)! "
                     "Progress bar is disabled.")
        ):
            dci = self.TestNumpyArrayDataChunkIterator(
                array=self.test_array,
                display_progress=True,
            )
            self.assertFalse(dci.display_progress)

    def test_pickle(self):
        pre_dump_iterator = PickleableNumpyArrayDataChunkIterator(array=self.test_array)
        post_dump_iterator = pickle.loads(pickle.dumps(pre_dump_iterator))

        assert isinstance(post_dump_iterator, PickleableNumpyArrayDataChunkIterator)
        assert post_dump_iterator.chunk_shape == pre_dump_iterator.chunk_shape
        assert post_dump_iterator.buffer_shape == pre_dump_iterator.buffer_shape
        assert_array_equal(post_dump_iterator.array, pre_dump_iterator.array)