File: test_utils.py

package info (click to toggle)
hdmf 3.14.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,372 kB
  • sloc: python: 34,738; makefile: 303; sh: 35
file content (206 lines) | stat: -rw-r--r-- 7,047 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os

import h5py
import numpy as np
from hdmf.data_utils import DataChunkIterator, DataIO
from hdmf.testing import TestCase
from hdmf.utils import get_data_shape, to_uint_array


class TestGetDataShape(TestCase):

    def test_h5dataset(self):
        """Test get_data_shape on h5py.Datasets of various shapes and maxshape."""
        path = 'test_get_data_shape.h5'
        with h5py.File(path, 'w') as f:
            dset = f.create_dataset('data', data=((1, 2), (3, 4), (5, 6)))
            res = get_data_shape(dset)
            self.assertTupleEqual(res, (3, 2))

            dset = f.create_dataset('shape', shape=(3, 2))
            res = get_data_shape(dset)
            self.assertTupleEqual(res, (3, 2))

            # test that maxshape takes priority
            dset = f.create_dataset('shape_maxshape', shape=(3, 2), maxshape=(None, 100))
            res = get_data_shape(dset)
            self.assertTupleEqual(res, (None, 100))

        os.remove(path)

    def test_dci(self):
        """Test get_data_shape on DataChunkIterators of various shapes and maxshape."""
        dci = DataChunkIterator(dtype=np.dtype(int))
        res = get_data_shape(dci)
        self.assertIsNone(res)

        dci = DataChunkIterator(data=[1, 2])
        res = get_data_shape(dci)
        self.assertTupleEqual(res, (2, ))

        dci = DataChunkIterator(data=[[1, 2], [3, 4], [5, 6]])
        res = get_data_shape(dci)
        self.assertTupleEqual(res, (3, 2))

        # test that maxshape takes priority
        dci = DataChunkIterator(data=[[1, 2], [3, 4], [5, 6]], maxshape=(None, 100))
        res = get_data_shape(dci)
        self.assertTupleEqual(res, (None, 100))

    def test_dataio(self):
        """Test get_data_shape on DataIO of various shapes and maxshape."""
        dio = DataIO(data=[1, 2])
        res = get_data_shape(dio)
        self.assertTupleEqual(res, (2, ))

        dio = DataIO(data=[[1, 2], [3, 4], [5, 6]])
        res = get_data_shape(dio)
        self.assertTupleEqual(res, (3, 2))

        dio = DataIO(data=np.array([[1, 2], [3, 4], [5, 6]]))
        res = get_data_shape(dio)
        self.assertTupleEqual(res, (3, 2))

    def test_list(self):
        """Test get_data_shape on lists of various shapes."""
        res = get_data_shape(list())
        self.assertTupleEqual(res, (0, ))

        res = get_data_shape([1, 2])
        self.assertTupleEqual(res, (2, ))

        res = get_data_shape([[1, 2], [3, 4], [5, 6]])
        self.assertTupleEqual(res, (3, 2))

    def test_tuple(self):
        """Test get_data_shape on tuples of various shapes."""
        res = get_data_shape(tuple())
        self.assertTupleEqual(res, (0, ))

        res = get_data_shape((1, 2))
        self.assertTupleEqual(res, (2, ))

        res = get_data_shape(((1, 2), (3, 4), (5, 6)))
        self.assertTupleEqual(res, (3, 2))

    def test_nparray(self):
        """Test get_data_shape on numpy arrays of various shapes."""
        res = get_data_shape(np.empty([]))
        self.assertTupleEqual(res, tuple())

        res = get_data_shape(np.array([]))
        self.assertTupleEqual(res, (0, ))

        res = get_data_shape(np.array([1, 2]))
        self.assertTupleEqual(res, (2, ))

        res = get_data_shape(np.array([[1, 2], [3, 4], [5, 6]]))
        self.assertTupleEqual(res, (3, 2))

    def test_other(self):
        """Test get_data_shape on miscellaneous edge cases."""
        res = get_data_shape(dict())
        self.assertIsNone(res)

        res = get_data_shape(None)
        self.assertIsNone(res)

        res = get_data_shape([None, None])
        self.assertTupleEqual(res, (2, ))

        res = get_data_shape(object())
        self.assertIsNone(res)

        res = get_data_shape([object(), object()])
        self.assertTupleEqual(res, (2, ))

    def test_string(self):
        """Test get_data_shape on strings and collections of strings."""
        res = get_data_shape('abc')
        self.assertIsNone(res)

        res = get_data_shape(('a', 'b'))
        self.assertTupleEqual(res, (2, ))

        res = get_data_shape((('a', 'b'), ('c', 'd'), ('e', 'f')))
        self.assertTupleEqual(res, (3, 2))

    def test_set(self):
        """Test get_data_shape on sets, which have __len__ but are not subscriptable."""
        res = get_data_shape(set())
        self.assertTupleEqual(res, (0, ))

        res = get_data_shape({1, 2})
        self.assertTupleEqual(res, (2, ))

    def test_arbitrary_iterable_with_len(self):
        """Test get_data_shape with strict_no_data_load=True on an arbitrary iterable object with __len__."""

        class MyIterable:
            """Iterable class without shape or maxshape, where loading the first element raises an error."""

            def __len__(self):
                return 10

            def __iter__(self):
                return self

            def __next__(self):
                raise DataLoadedError()

        class DataLoadedError(Exception):
            pass

        data = MyIterable()
        with self.assertRaises(DataLoadedError):
            get_data_shape(data)  # test that data is loaded

        res = get_data_shape(data, strict_no_data_load=True)  # no error raised means data was not loaded
        self.assertIsNone(res)

    def test_strict_no_data_load(self):
        """Test get_data_shape with strict_no_data_load=True on nested lists/tuples is the same as when it is False."""
        res = get_data_shape([[1, 2], [3, 4], [5, 6]], strict_no_data_load=True)
        self.assertTupleEqual(res, (3, 2))

        res = get_data_shape(((1, 2), (3, 4), (5, 6)), strict_no_data_load=True)
        self.assertTupleEqual(res, (3, 2))


class TestToUintArray(TestCase):

    def test_ndarray_uint(self):
        arr = np.array([0, 1, 2], dtype=np.uint32)
        res = to_uint_array(arr)
        np.testing.assert_array_equal(res, arr)

    def test_ndarray_int(self):
        arr = np.array([0, 1, 2], dtype=np.int32)
        res = to_uint_array(arr)
        np.testing.assert_array_equal(res, arr)

    def test_ndarray_int_neg(self):
        arr = np.array([0, -1, 2], dtype=np.int32)
        with self.assertRaisesWith(ValueError, 'Cannot convert negative integer values to uint.'):
            to_uint_array(arr)

    def test_ndarray_float(self):
        arr = np.array([0, 1, 2], dtype=np.float64)
        with self.assertRaisesWith(ValueError, 'Cannot convert array of dtype float64 to uint.'):
            to_uint_array(arr)

    def test_list_int(self):
        arr = [0, 1, 2]
        res = to_uint_array(arr)
        expected = np.array([0, 1, 2], dtype=np.uint32)
        np.testing.assert_array_equal(res, expected)

    def test_list_int_neg(self):
        arr = [0, -1, 2]
        with self.assertRaisesWith(ValueError, 'Cannot convert negative integer values to uint.'):
            to_uint_array(arr)

    def test_list_float(self):
        arr = [0., 1., 2.]
        with self.assertRaisesWith(ValueError, 'Cannot convert array of dtype float64 to uint.'):
            to_uint_array(arr)