File: test_fitsfunc.py

package info (click to toggle)
healpy 1.19.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 17,464 kB
  • sloc: ansic: 113,657; cpp: 15,827; python: 10,793; sh: 8,443; yacc: 5,410; fortran: 2,613; lex: 553; makefile: 380
file content (403 lines) | stat: -rw-r--r-- 14,598 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os

from pathlib import Path
import astropy.io.fits as pf
import unittest
import numpy as np
import gzip

import healpy
from healpy.fitsfunc import *
from healpy.sphtfunc import *


class TestFitsFunc(unittest.TestCase):
    def setUp(self):
        self.nside = 512
        self.m = np.arange(healpy.nside2npix(self.nside))
        self.filename = "testmap.fits"

    def test_write_map_IDL(self):
        write_map(self.filename, self.m, fits_IDL=True)
        with pf.open(self.filename) as f:
            read_m = f[1].data.field(0)
            self.assertEqual(read_m.ndim, 2)
            self.assertEqual(read_m.shape[1], 1024)
            self.assertTrue(np.all(self.m == read_m.flatten()))

    def test_write_map_units_string(self):
        write_map(self.filename, self.m, column_units="K")
        with pf.open(self.filename) as f:
            assert f[1].header["TUNIT1"] == "K"

    def test_write_map_pathlib(self):
        path = Path(self.filename)
        assert isinstance(path, Path)
        write_map(path, self.m)
        #read_map(path)

    def test_write_map_units_list(self):
        write_map(self.filename, [self.m, self.m], column_units=["K", "mK"]) # evil!
        with pf.open(self.filename) as f:
            assert f[1].header["TUNIT1"] == "K"
            assert f[1].header["TUNIT2"] == "mK"

    def test_write_map_C(self):
        write_map(self.filename, self.m, fits_IDL=False)
        with pf.open(self.filename) as f:
            read_m = f[1].data.field(0)
            self.assertEqual(read_m.ndim, 1)
            self.assertTrue(np.all(self.m == read_m))

    def test_write_map_C_3comp(self):
        write_map(self.filename, [self.m, self.m, self.m], fits_IDL=False)
        with pf.open(self.filename) as f:
            read_m = f[1].data
            for comp in range(3):
                self.assertTrue(np.all(self.m == read_m.field(comp)))

    def test_read_map_filename(self):
        write_map(self.filename, self.m)
        read_map(self.filename)

    def test_read_map_filename_pathlib(self):
        path = Path(self.filename)
        write_map(path, self.m)
        read_map(path)

    def test_read_map_filename_with_header(self):
        write_map(self.filename, self.m)
        m, h = read_map(self.filename, h=True)
        header = dict(h)
        self.assertEqual(header["NSIDE"], 512)

    def test_read_map_hdulist(self):
        write_map(self.filename, self.m)
        hdulist = pf.open(self.filename)
        read_map(hdulist)
        hdulist.close()

    def test_read_map_hdu(self):
        write_map(self.filename, self.m)
        with pf.open(self.filename) as f:
            hdu = f[1]
            read_map(hdu)

    def test_read_map_all(self):
        write_map(self.filename, [self.m, self.m, self.m], overwrite=True)
        read_m = read_map(self.filename, None)
        for rm in read_m:
            np.testing.assert_array_almost_equal(self.m, rm)

    def test_read_map_multiple_dtype(self):
        dtypes = [np.int32, np.float32, np.float64]
        m = []
        for dtype in dtypes:
            m.append(self.m.astype(dtype))
        write_map(self.filename, m, overwrite=True)
        read_m = read_map(self.filename, None, dtype=dtypes)
        for rm, dtype in zip(read_m, dtypes):
            self.assertEqual(rm.dtype, dtype)

    def test_read_map_single_dtype(self):
        dtypes = [np.int32, np.float32, np.float64]
        m = []
        for dtype in dtypes:
            m.append(self.m.astype(dtype))
        write_map(self.filename, m, overwrite=True)
        dtype = np.float32
        read_m = read_map(self.filename, None, dtype=dtype)
        self.assertEqual(read_m.dtype, dtype)

    def test_read_map_all_with_header(self):
        write_map(self.filename, [self.m, self.m, self.m], overwrite=True)
        read_m, h = read_map(self.filename, None, h=True)
        header = dict(h)
        self.assertEqual(header["NSIDE"], 512)
        for rm in read_m:
            np.testing.assert_array_almost_equal(self.m, rm)

    def test_read_write_partial(self):
        m = self.m.astype(float)
        m[: 11 * self.nside * self.nside] = UNSEEN
        write_map(self.filename, m, partial=True)
        read_m = read_map(self.filename)
        np.testing.assert_array_almost_equal(m, read_m)

    def test_read_write_partial_3comp(self):
        m = self.m.astype(float)
        m[: 11 * self.nside * self.nside] = UNSEEN
        write_map(self.filename, [m, m, m], partial=True)
        read_m = read_map(self.filename, (0, 1, 2))
        for rm in read_m:
            np.testing.assert_array_almost_equal(m, rm)

    def test_read_write_dtype(self):
        write_map(self.filename, self.m, dtype=np.float64)
        read_m = read_map(self.filename, dtype=np.float32)
        np.testing.assert_almost_equal(np.float32(self.m), read_m)

    def test_read_write_dtype_multiarr(self):
        write_map(self.filename, [self.m, self.m, self.m], dtype=np.float64)
        read_m = read_map(self.filename, field=(0, 1, 2), dtype=np.float32)
        for rm in read_m:
            np.testing.assert_array_almost_equal(np.float32(self.m), rm)

    def test_read_write_iterable_dtype(self):
        write_map(
            self.filename,
            [self.m, self.m, self.m],
            dtype=[np.float64, np.float32, np.int32],
        )
        read_m = read_map(
            self.filename, field=(0, 1, 2), dtype=[np.float32, np.int32, np.float64]
        )
        for rm, dtype in zip(read_m, [np.float32, np.int32, np.float64]):
            np.testing.assert_almost_equal(dtype(self.m), rm)

    def tearDown(self):
        if os.path.exists(self.filename):
            os.remove(self.filename)


class TestFitsFuncGzip(unittest.TestCase):
    def setUp(self):
        self.nside = 4
        self.m = np.arange(healpy.nside2npix(self.nside))
        self.filename = "testmap.fits.gz"

    def test_write_map(self):
        write_map(self.filename, self.m)
        # Make sure file is gzip-compressed
        gzfile = gzip.open(self.filename, "rb")
        gzfile.read()
        gzfile.close()
        read_map(self.filename)

    def tearDown(self):
        if os.path.exists(self.filename):
            os.remove(self.filename)


class TestReadWriteAlm(unittest.TestCase):
    def setUp(self):

        s = Alm.getsize(256)
        self.alms = [
            np.arange(s, dtype=np.complex128),
            np.arange(s, dtype=np.complex128),
            np.arange(s, dtype=np.complex128),
        ]

    def tearDown(self):
        if os.path.exists("testalm_128.fits"):
            os.remove("testalm_128.fits")
        if os.path.exists("testalm_256.fits"):
            os.remove("testalm_256.fits")
        if os.path.exists("testalm_256_128.fits"):
            os.remove("testalm_256_128.fits")

    def test_write_alm(self):

        write_alm("testalm_128.fits", self.alms, lmax=128, mmax=128)
        a0 = read_alm("testalm_128.fits")
        # Sanity check of the file
        self.assertEqual(Alm.getlmax(len(a0)), 128)

        # Check the written data
        a0 = read_alm("testalm_128.fits")
        l0, m0 = Alm.getlm(128)
        # We extract 0 <= l <= 128 and 0 <= m <= 128 from self.alms
        idx = Alm.getidx(256, l0, m0)
        np.testing.assert_array_almost_equal(self.alms[0][idx], a0)

    def test_write_alm_256_128(self):
        write_alm("testalm_256_128.fits", self.alms, lmax=256, mmax=128)
        a0, mmax = read_alm("testalm_256_128.fits", return_mmax=True)
        self.assertEqual(mmax, 128)
        self.assertEqual(Alm.getlmax(len(a0), mmax=mmax), 256)

        # Check the written data
        a0 = read_alm("testalm_256_128.fits")

        l0, m0 = Alm.getlm(256)
        idx = Alm.getidx(256, l0, m0)
        # Extract 0 <= l <= 256 and 0 <= m <= 128
        idx_mmax = np.where(m0 <= mmax)
        idx = idx[idx_mmax]
        np.testing.assert_array_almost_equal(self.alms[0][idx], a0)

    def test_read_alm_filename(self):
        write_alm("testalm_128.fits", self.alms, lmax=128, mmax=128)
        read_alm("testalm_128.fits")

    def test_read_alm_pathlib(self):
        path = Path("testalm_128.fits")
        write_alm(path, self.alms, lmax=128, mmax=128)
        read_alm(path)

    def test_read_alm_filename_array(self):
        write_alm("testalm_256.fits", self.alms, overwrite=True)
        testalm1 = np.array(self.alms)
        testalm2 = read_alm("testalm_256.fits", [1, 2, 3])
        np.testing.assert_array_almost_equal(testalm1, testalm2)

    def test_read_alm_hdulist(self):
        write_alm("testalm_128.fits", self.alms, lmax=128, mmax=128)
        hdulist = pf.open("testalm_128.fits")
        read_alm(hdulist)
        hdulist.close()

    def test_read_alm_hdu(self):
        write_alm("testalm_128.fits", self.alms, lmax=128, mmax=128)
        with pf.open("testalm_128.fits") as f:
            hdu = f[1]
            read_alm(hdu)


class TestReadWriteCl(unittest.TestCase):
    def setUp(self):
        self.filename = "test_cl.fits"

    def tearDown(self):
        if os.path.exists(self.filename):
            os.remove(self.filename)

    def test_write_read_cl_II(self):
        cl = np.arange(1025, dtype=np.double)
        write_cl(self.filename, cl)
        cl_read = read_cl(self.filename)
        np.testing.assert_array_almost_equal(cl, cl_read)

    def test_write_read_cl_4comp(self):
        cl = [np.arange(1025, dtype=np.double) for n in range(4)]
        write_cl(self.filename, cl)
        cl_read = read_cl(self.filename)
        for cl_column, cl_read_column in zip(cl, cl_read):
            np.testing.assert_array_almost_equal(cl_column, cl_read_column)

    def test_write_read_cl_6comp(self):
        cl = [np.arange(1025, dtype=np.double) for n in range(6)]
        write_cl(self.filename, cl)
        cl_read = read_cl(self.filename)
        for cl_column, cl_read_column in zip(cl, cl_read):
            np.testing.assert_array_almost_equal(cl_column, cl_read_column)

    def test_read_cl_filename(self):
        cl = np.arange(1025, dtype=np.double)
        write_cl(self.filename, cl)
        read_cl(self.filename)

    def test_read_cl_hdulist(self):
        cl = np.arange(1025, dtype=np.double)
        write_cl("test_cl.fits", cl)
        with pf.open("test_cl.fits") as hdulist:
            read_cl(hdulist)

    def test_read_cl_hdu(self):
        cl = np.arange(1025, dtype=np.double)
        write_cl("test_cl.fits", cl)
        with pf.open("test_cl.fits") as hdulist:
            hdu = hdulist[1]
            read_cl(hdu)

    def test_write_read_cl_9comp(self):
        """Test writing and reading 9 components (more than the default 6)."""
        cl = [np.arange(1025, dtype=np.double) for n in range(9)]
        write_cl(self.filename, cl)
        cl_read = read_cl(self.filename)
        for cl_column, cl_read_column in zip(cl, cl_read):
            np.testing.assert_array_almost_equal(cl_column, cl_read_column)

    def test_write_cl_custom_column_names(self):
        """Test writing with custom column names."""
        cl = [np.arange(1025, dtype=np.double) for n in range(4)]
        custom_names = ["TT", "EE", "BB", "TE"]
        write_cl(self.filename, cl, column_names=custom_names)
        with pf.open(self.filename) as f:
            # Check that custom column names are used
            for i, name in enumerate(custom_names):
                assert f[1].columns[i].name == name
        cl_read = read_cl(self.filename)
        for cl_column, cl_read_column in zip(cl, cl_read):
            np.testing.assert_array_almost_equal(cl_column, cl_read_column)

    def test_write_cl_extra_header(self):
        """Test writing with extra header keywords."""
        cl = np.arange(1025, dtype=np.double)
        extra_header = [
            ("ORIGIN", "Test origin", "Source of the data"),
            ("FREQ1", 100, "Frequency in GHz"),
            ("FREQ2", 143, "Frequency in GHz"),
        ]
        write_cl(self.filename, cl, extra_header=extra_header)
        with pf.open(self.filename) as f:
            hdr = f[1].header
            assert hdr["ORIGIN"] == "Test origin"
            assert hdr["FREQ1"] == 100
            assert hdr["FREQ2"] == 143
        cl_read = read_cl(self.filename)
        np.testing.assert_array_almost_equal(cl, cl_read)

    def test_write_cl_9comp_with_custom_names_and_header(self):
        """Test all new features together: 9 components, custom names, and extra header."""
        cl = [np.arange(1025, dtype=np.double) * (n + 1) for n in range(9)]
        custom_names = ["II", "IQ", "IU", "QQ", "QU", "UU", "IJ", "QJ", "UJ"]
        extra_header = [
            ("ORIGIN", "Co-analysis", "Analysis type"),
            ("FREQ1", 100, "First frequency in GHz"),
            ("FREQ2", 143, "Second frequency in GHz"),
        ]
        write_cl(self.filename, cl, column_names=custom_names, extra_header=extra_header)
        
        # Verify headers and column names
        with pf.open(self.filename) as f:
            hdr = f[1].header
            assert hdr["ORIGIN"] == "Co-analysis"
            assert hdr["FREQ1"] == 100
            assert hdr["FREQ2"] == 143
            for i, name in enumerate(custom_names):
                assert f[1].columns[i].name == name
        
        # Verify data can be read back correctly
        cl_read = read_cl(self.filename)
        for cl_column, cl_read_column in zip(cl, cl_read):
            np.testing.assert_array_almost_equal(cl_column, cl_read_column)


def test_getformat():
    assert getformat(False) == "L"
    assert getformat([False]) == "L"
    assert getformat(str) == "A"
    assert getformat("CCC") == "A3"
    assert getformat(["DD", "CCC"]) == "A3"


def test_writemap_newdefault(tmp_path):
    filename = tmp_path / "test_map.fits"
    for dtype in (
        "bool",
        "uint8",
        "int16",
        "int32",
        "int64",
        "float32",
        "float64",
        "complex64",
        "complex128",
    ):
        m = np.ones(12, dtype=dtype)
        write_map(filename, m, overwrite=True)
        with pf.open(filename) as f:
            assert f[1].data.field(0).dtype.name == dtype
            np.testing.assert_array_almost_equal(f[1].data.field(0), m)


def test_writemap_typestr_endianness(tmp_path):
    filename = tmp_path / "test_map.fits"
    for endiannes in [">", "<"]:
        m = np.ones(12, dtype=">f4")
        write_map(filename, m, overwrite=True)
        with pf.open(filename) as f:
            assert f[1].data.field(0).dtype.name == "float32"
            np.testing.assert_array_almost_equal(f[1].data.field(0), m)