File: test_sphtfunc.py

package info (click to toggle)
healpy 1.19.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 17,464 kB
  • sloc: ansic: 113,657; cpp: 15,827; python: 10,793; sh: 8,443; yacc: 5,410; fortran: 2,613; lex: 553; makefile: 380
file content (767 lines) | stat: -rw-r--r-- 27,238 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
import astropy.io.fits as pf
import os
import numpy as np
from copy import deepcopy
from itertools import chain
import pytest
from urllib.error import URLError

import unittest

import healpy as hp

import warnings

# disable new order warnings in tests
warnings.filterwarnings("ignore")


class TestSphtFunc(unittest.TestCase):
    def setUp(self):
        self.lmax = 64
        self.path = os.path.dirname(os.path.realpath(__file__))
        self.map1 = [
            hp.ma(m)
            for m in hp.read_map(
                os.path.join(
                    self.path, "data", "wmap_band_iqumap_r9_7yr_W_v4_udgraded32.fits"
                ),
                (0, 1, 2),
            )
        ]
        self.map2 = [
            hp.ma(m)
            for m in hp.read_map(
                os.path.join(
                    self.path, "data", "wmap_band_iqumap_r9_7yr_V_v4_udgraded32.fits"
                ),
                (0, 1, 2),
            )
        ]
        self.mask = hp.read_map(
            os.path.join(
                self.path,
                "data",
                "wmap_temperature_analysis_mask_r9_7yr_v4_udgraded32.fits",
            )
        ).astype(np.bool_)
        for m in chain(self.map1, self.map2):
            m.mask = np.logical_not(self.mask)
        self.cla = hp.read_cl(
            os.path.join(
                self.path,
                "data",
                "cl_wmap_band_iqumap_r9_7yr_W_v4_udgraded32_II_lmax64_rmmono_3iter.fits",
            )
        )
        self.cl_fortran_nomask = hp.read_cl(
            os.path.join(
                self.path,
                "data",
                "cl_wmap_band_iqumap_r9_7yr_W_v4_udgraded32_II_lmax64_rmmono_3iter_nomask.fits",
            )
        )
        with pf.open(
            os.path.join(
                self.path,
                "data",
                "cl_wmap_band_iqumap_r9_7yr_W_v4_udgraded32_IQU_lmax64_rmmono_3iter.fits",
            )
        ) as cls_file:
            # fix for pyfits to read the file with duplicate column names
            for i in range(2, 6):
                cls_file[1].header["TTYPE%d" % i] += "-%d" % i
            cls = cls_file[1].data
            # order of HEALPIX is TB, EB while in healpy is EB, TB
            self.cliqu = [np.array(cls.field(i)) for i in (0, 1, 2, 3, 5, 4)]
        nside = 32
        lmax = 64
        fwhm_deg = 7.0
        seed = 12345
        np.random.seed(seed)
        self.mapiqu = hp.synfast(
            self.cliqu,
            nside,
            lmax=lmax,
            pixwin=False,
            fwhm=np.radians(fwhm_deg),
            new=False,
        )

    def test_anafast(self):
        cl = hp.anafast(hp.remove_monopole(self.map1[0].filled()), lmax=self.lmax)
        self.assertEqual(len(cl), 65)
        np.testing.assert_array_almost_equal(cl, self.cla, decimal=8)

    def test_anafast_nomask(self):
        cl = hp.anafast(hp.remove_monopole(self.map1[0].data), lmax=self.lmax)
        self.assertEqual(len(cl), 65)
        np.testing.assert_array_almost_equal(cl, self.cl_fortran_nomask, decimal=8)

    def test_anafast_iqu(self):
        self.map1[0] = hp.remove_monopole(self.map1[0])
        cl = hp.anafast(self.map1, lmax=self.lmax)
        self.assertEqual(len(cl[0]), 65)
        self.assertEqual(len(cl), 6)
        for i in range(6):
            np.testing.assert_array_almost_equal(cl[i], self.cliqu[i], decimal=8)

    def test_anafast_xspectra(self):
        cl = hp.anafast(
            hp.remove_monopole(self.map1[0]),
            hp.remove_monopole(self.map2[0]),
            lmax=self.lmax,
        )
        self.assertEqual(len(cl), self.lmax + 1)
        clx = hp.read_cl(
            os.path.join(
                self.path,
                "data",
                "cl_wmap_band_iqumap_r9_7yr_WVxspec_v4_udgraded32_II_lmax64_rmmono_3iter.fits",
            )
        )
        np.testing.assert_array_almost_equal(cl, clx, decimal=8)

    def test_synfast(self):
        nside = 32
        lmax = 64
        fwhm_deg = 7.0
        seed = 12345
        np.random.seed(seed)
        map_pregen = hp.read_map(
            os.path.join(self.path, "data", "map_synfast_seed%d.fits" % seed), (0, 1, 2)
        )
        sim_map = hp.synfast(
            self.cliqu,
            nside,
            lmax=lmax,
            pixwin=False,
            fwhm=np.radians(fwhm_deg),
            new=False,
            pol=True,
        )
        np.testing.assert_array_almost_equal(sim_map, map_pregen, decimal=8)

    def test_smoothing_notmasked(self):
        smoothed = hp.smoothing(
            [m.data for m in self.map1], fwhm=np.radians(10), lmax=self.lmax
        )
        smoothed_f90 = hp.read_map(
            os.path.join(
                self.path,
                "data",
                "wmap_band_iqumap_r9_7yr_W_v4_udgraded32_smoothed10deg_fortran.fits",
            ),
            (0, 1, 2),
            np.float64,
        )
        np.testing.assert_array_almost_equal(smoothed, smoothed_f90, decimal=6)

    def test_smoothing_masked(self):
        smoothed = hp.smoothing(self.map1, fwhm=np.radians(10), lmax=self.lmax)
        smoothed_f90 = hp.ma(
            hp.read_map(
                os.path.join(
                    self.path,
                    "data",
                    "wmap_band_iqumap_r9_7yr_W_v4_udgraded32_masked_smoothed10deg_fortran.fits",
                ),
                (0, 1, 2),
                np.float64,
            )
        )
        # fortran does not restore the mask
        smoothed_f90.mask = smoothed.mask
        np.testing.assert_array_almost_equal(
            smoothed.filled(), smoothed_f90.filled(), decimal=6
        )

    def test_gauss_beam(self):
        with pf.open(
            os.path.join(self.path, "data", "gaussbeam_10arcmin_lmax512_pol.fits")
        ) as f:
            idl_gauss_beam = np.array(f[0].data).T
        gauss_beam = hp.gauss_beam(np.radians(10.0 / 60.0), lmax=512, pol=True)
        np.testing.assert_allclose(idl_gauss_beam, gauss_beam)

    def test_alm2cl(self):
        lmax = 64
        lmax_out = 100
        seed = 12345
        np.random.seed(seed)

        # Input power spectrum and alm
        alm_syn = hp.synalm(self.cla, lmax=lmax)

        cl_out = hp.alm2cl(alm_syn, lmax_out=lmax_out - 1)

        np.testing.assert_array_almost_equal(cl_out, self.cla[:lmax_out], decimal=4)

    def test_map2alm(self):
        nside = 32
        lmax = 64
        fwhm_deg = 7.0
        seed = 12345
        np.random.seed(seed)
        orig = hp.synfast(
            self.cla,
            nside,
            lmax=lmax,
            pixwin=False,
            fwhm=np.radians(fwhm_deg),
            new=False,
        )
        tmp = np.empty(orig.size * 2)
        tmp[::2] = orig
        maps = [orig, orig.astype(np.float32), tmp[::2]]
        for use_weights in [False, True]:
            for input in maps:
                alm = hp.map2alm(input, iter=10, use_weights=use_weights)
                output = hp.alm2map(alm, nside)
                np.testing.assert_allclose(input, output, atol=1e-4)

    def test_map2alm_lsq(self):
        nside = 32
        lmax = 64
        fwhm_deg = 7.0
        seed = 12345
        np.random.seed(seed)
        orig = hp.synfast(
            self.cla,
            nside,
            lmax=lmax,
            pixwin=False,
            fwhm=np.radians(fwhm_deg),
            new=False,
        )
        tmp = np.empty(orig.size * 2)
        tmp[::2] = orig
        maps = [orig, orig.astype(np.float32), tmp[::2]]
        for input in maps:
            alm, l2, it = hp.map2alm_lsq(input, tol=1e-4, lmax=lmax, mmax=lmax)
            np.testing.assert_equal(l2 < 1e-3, True)
            np.testing.assert_equal(it < 15, True)
            output = hp.alm2map(alm, nside)
            np.testing.assert_allclose(input, output, atol=1e-4)

    def test_map2alm_pol(self):
        tmp = [np.empty(o.size * 2) for o in self.mapiqu]
        for t, o in zip(tmp, self.mapiqu):
            t[::2] = o
        maps = [
            self.mapiqu,
            [o.astype(np.float32) for o in self.mapiqu],
            [t[::2] for t in tmp],
        ]
        for use_weights in [False, True]:
            for input in maps:
                alm = hp.map2alm(input, iter=10, use_weights=use_weights)
                output = hp.alm2map(alm, 32)
                for i, o in zip(input, output):
                    np.testing.assert_allclose(i, o, atol=1e-4)

    def test_map2alm_lsq_pol(self):
        tmp = [np.empty(o.size * 2) for o in self.mapiqu]
        for t, o in zip(tmp, self.mapiqu):
            t[::2] = o
        maps = [
            self.mapiqu,
            [o.astype(np.float32) for o in self.mapiqu],
            [t[::2] for t in tmp],
        ]
        for input in maps:
            alm, l2, it = hp.map2alm_lsq(
                input, tol=1e-4, lmax=self.lmax, mmax=self.lmax
            )
            np.testing.assert_equal(l2 < 1e-3, True)
            np.testing.assert_equal(it < 15, True)
            output = hp.alm2map(alm, 32)
            for i, o in zip(input, output):
                np.testing.assert_allclose(i, o, atol=1e-4)

    def test_map2alm_pol_gal_cut(self):
        tmp = [np.empty(o.size * 2) for o in self.mapiqu]
        for t, o in zip(tmp, self.mapiqu):
            t[::2] = o
        maps = [
            self.mapiqu,
            [o.astype(np.float32) for o in self.mapiqu],
            [t[::2] for t in tmp],
        ]
        for use_weights in [False, True]:
            for input in maps:
                gal_cut = 30
                nside = hp.get_nside(input)
                npix = hp.nside2npix(nside)
                gal_mask = (
                    np.abs(hp.pix2ang(nside, np.arange(npix), lonlat=True)[1]) < gal_cut
                )
                alm = hp.map2alm(
                    input, iter=10, use_weights=use_weights, gal_cut=gal_cut
                )
                output = hp.alm2map(alm, 32)
                for i, o in zip(input, output):
                    # Testing requires low tolerances because of the
                    # mask boundary
                    i[gal_mask] = 0
                    np.testing.assert_allclose(i, o, atol=1e-2)

    def test_rotate_alm(self):
        almigc = hp.map2alm(self.mapiqu)
        alms = [almigc[0], almigc[0:2], almigc, np.vstack(almigc)]
        for i in alms:
            o = deepcopy(i)
            hp.rotate_alm(o, 0.1, 0.2, 0.3)
            hp.rotate_alm(o, -0.3, -0.2, -0.1)
            # FIXME: rtol=1e-6 works here, except on Debian with Python 3.4.
            np.testing.assert_allclose(i, o, rtol=1e-5)

    def test_rotate_alm_rotmatrix(self):
        """rotate_alm also support rotation matrix instead of angles"""
        lmax = 32
        nalm = hp.Alm.getsize(lmax)
        alm = np.zeros([3, nalm], dtype=complex)
        alm[0, 1] = 1
        alm[1, 2] = 1
        alm_rotated_angles = alm.copy()
        angles = hp.rotator.coordsys2euler_zyz(coord=["G", "E"])
        hp.rotate_alm(alm_rotated_angles, *angles)
        gal2ecl = hp.Rotator(coord=["G", "E"])
        hp.rotate_alm(alm, matrix=gal2ecl.mat)
        np.testing.assert_allclose(alm_rotated_angles, alm)

    def test_rotate_alm2(self):
        # Test rotate_alm against the Fortran library
        lmax = 64
        nalm = hp.Alm.getsize(lmax)
        alm = np.zeros([3, nalm], dtype=complex)
        for i in range(3):
            for ell in range(lmax + 1):
                for m in range(ell):
                    ind = hp.Alm.getidx(lmax, ell, m)
                    alm[i, ind] = (i + 1) * 10 + ell + 1j * m
        psi = np.pi / 3.0
        theta = 0.5
        phi = 0.01
        hp.rotate_alm(alm, psi, theta, phi)

        ref_0_0_0 = 0.00000000000 + 0.00000000000j
        ref_0_21_0 = -64.0056622444 + 0.00000000000j
        ref_0_21_21 = -3.19617408364 + 2.00219590117j
        ref_0_42_0 = 87.8201360825 + 0.00000000000j
        ref_0_42_21 = -6.57242309702 + 50.1128079361j
        ref_0_42_42 = 0.792592362074 - 0.928452597766j
        ref_0_63_0 = -49.6732554742 + 0.00000000000j
        ref_0_63_21 = -51.2812623888 - 61.6289129316j
        ref_0_63_42 = -9.32823219430 + 79.0787993482j
        ref_0_63_63 = -0.157204566965 + 0.324692958700j
        ref_1_0_0 = 0.00000000000 + 0.00000000000j
        ref_1_21_0 = -85.5520809077 + 0.00000000000j
        ref_1_21_21 = -3.57384285749 + 2.93255811219j
        ref_1_42_0 = 107.541172254 + 0.00000000000j
        ref_1_42_21 = -2.77944941833 + 57.1015322415j
        ref_1_42_42 = 0.794212854046 - 1.10982745343j
        ref_1_63_0 = -60.7153303746 + 0.00000000000j
        ref_1_63_21 = -61.0915123767 - 65.9943878923j
        ref_1_63_42 = -4.86354653261 + 86.5277253196j
        ref_1_63_63 = -0.147165377786 + 0.360474777237j

        ref = np.array(
            [
                ref_0_0_0,
                ref_0_21_0,
                ref_0_21_21,
                ref_0_42_0,
                ref_0_42_21,
                ref_0_42_42,
                ref_0_63_0,
                ref_0_63_21,
                ref_0_63_42,
                ref_0_63_63,
                ref_1_0_0,
                ref_1_21_0,
                ref_1_21_21,
                ref_1_42_0,
                ref_1_42_21,
                ref_1_42_42,
                ref_1_63_0,
                ref_1_63_21,
                ref_1_63_42,
                ref_1_63_63,
            ]
        )

        mine = []
        for i in [0, 1]:
            for ell in range(0, lmax + 1, 21):
                for m in range(0, ell + 1, 21):
                    ind = hp.Alm.getidx(lmax, ell, m)
                    mine.append(alm[i, ind])

        mine = np.array(ref)

        np.testing.assert_allclose(ref, mine, rtol=1e-10)

    def test_accept_ma_allows_only_keywords(self):
        """Test whether 'smoothing' wrapped with accept_ma works with only
        keyword arguments."""

        ma = np.ones(12 * 16**2)
        try:
            hp.smoothing(map_in=ma)
        except IndexError:
            self.fail()

    def test_beam2bl(self):
        """Test beam2bl against analytical transform of Gaussian beam."""

        theta = np.linspace(0, np.radians(1.0), 1000)
        sigma = np.radians(10.0 / 60.0) / np.sqrt(8.0 * np.log(2.0))
        gaussian_beam = np.exp(-0.5 * (theta / sigma) ** 2) / (2 * np.pi * sigma**2)

        ell = np.arange(512 + 1.0)
        gaussian_window = np.exp(-0.5 * ell * (ell + 1) * sigma**2)

        bl = hp.beam2bl(gaussian_beam, theta, 512)
        np.testing.assert_allclose(gaussian_window, bl, rtol=1e-4)

    def test_bl2beam(self):
        """Test bl2beam against analytical transform of Gaussian beam."""

        theta = np.linspace(0, np.radians(3.0), 1000)
        sigma = np.radians(1.0) / np.sqrt(8.0 * np.log(2.0))
        gaussian_beam = np.exp(-0.5 * (theta / sigma) ** 2) / (2 * np.pi * sigma**2)

        ell = np.arange(2048 + 1.0)
        gaussian_window = np.exp(-0.5 * ell * (ell + 1) * sigma**2)

        beam = hp.bl2beam(gaussian_window, theta)
        np.testing.assert_allclose(gaussian_beam, beam, rtol=1e-3)

    def test_max_nside_check(self):
        """Test whether the max_nside_check correctly raises ValueErrors for nsides
        that are too large."""

        # Test an nside that is too large
        with self.assertRaises(ValueError):
            hp.check_max_nside(16384)

        # Test an nside that is valid
        # hp.check_max_nside will return 0 if no exceptions are raised
        self.assertEqual(hp.check_max_nside(1024), 0)

    @pytest.mark.skip('This test require remote data')
    def test_pixwin_base(self):
        # Base case
        nsides = [2**p for p in np.arange(1, 14)]
        [hp.pixwin(nside) for nside in nsides]

        # Test invalid nside
        with self.assertRaises(URLError):
            hp.pixwin(15)

    @pytest.mark.skip('This test require remote data')
    def test_pixwin_pol(self):
        pixwin = hp.pixwin(128, pol=True)
        self.assertEqual(len(pixwin), 2)

    @pytest.mark.skip('This test require remote data')
    def test_pixwin_lmax(self):
        nside = 128
        pixwin = hp.pixwin(nside, lmax=None)
        self.assertEqual(len(pixwin), 3 * nside)

        lmax = 200
        pixwin = hp.pixwin(nside, lmax=lmax)
        self.assertEqual(len(pixwin) - 1, lmax)

    def test_getlm_overflow(self):
        # test that overflow raises valueerror
        with self.assertRaises(AssertionError):
            hp.Alm.getlm(500, 125751)

    def test_rotate_alm_complex64(self):
        lmax = 32
        nalm = hp.Alm.getsize(lmax)
        alm = np.zeros([3, nalm], dtype=np.complex64)
        with pytest.raises(ValueError):
            hp.rotate_alm(alm, 0.1, 0.2, 0.3)

    def test_alm2map_complex_dtypes(self):
        """Test that alm2map works with different complex dtypes"""
        for dtype in (np.complex64, np.complex128):
            alm = np.zeros((10,), dtype=dtype)

            # All of these should work without raising a TypeError
            map_result = hp.alm2map(alm, nside=1, lmax=3)
            self.assertEqual(map_result.shape, (12,))  # nside=1 has 12 pixels

            maps_spin = hp.alm2map_spin([alm, alm], nside=1, lmax=3, spin=2)
            self.assertEqual(len(maps_spin), 2)

            # Also test alm2map_der1
            result_der1 = hp.alm2map_der1(alm, nside=1, lmax=3)
            self.assertEqual(len(result_der1), 3)  # returns (map, dtheta, dphi)

    def test_blm_gauss(self):
        lmax = 16
        pol = True
        blm = hp.blm_gauss(np.radians(30), lmax=lmax, pol=pol)
        blm_ref = np.array(
            [
                [
                    0.28209479 + 0.0j,
                    0.46503326 + 0.0j,
                    0.54383232 + 0.0j,
                    0.55477130 + 0.0j,
                    0.51617799 + 0.0j,
                    0.44567282 + 0.0j,
                    0.36013172 + 0.0j,
                    0.27367400 + 0.0j,
                    0.19617285 + 0.0j,
                    0.13290646 + 0.0j,
                    0.08522404 + 0.0j,
                    0.05177592 + 0.0j,
                    0.02982454 + 0.0j,
                    0.01629873 + 0.0j,
                    0.00845410 + 0.0j,
                    0.00416365 + 0.0j,
                    0.00194761 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                ],
                [
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.19227376 + 0.0j,
                    0.19614127 + 0.0j,
                    0.18249648 + 0.0j,
                    0.15756914 + 0.0j,
                    0.12732579 + 0.0j,
                    0.09675837 + 0.0j,
                    0.06935758 + 0.0j,
                    0.04698953 + 0.0j,
                    0.03013125 + 0.0j,
                    0.01830555 + 0.0j,
                    0.01054457 + 0.0j,
                    0.00576247 + 0.0j,
                    0.00298897 + 0.0j,
                    0.00147207 + 0.0j,
                    0.00068859 + 0.0j,
                ],
                [
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.0j,
                    0.0 + 0.19227376j,
                    0.0 + 0.19614127j,
                    0.0 + 0.18249648j,
                    0.0 + 0.15756914j,
                    0.0 + 0.12732579j,
                    0.0 + 0.09675837j,
                    0.0 + 0.06935758j,
                    0.0 + 0.04698953j,
                    0.0 + 0.03013125j,
                    0.0 + 0.01830555j,
                    0.0 + 0.01054457j,
                    0.0 + 0.00576247j,
                    0.0 + 0.00298897j,
                    0.0 + 0.00147207j,
                    0.0 + 0.00068859j,
                ],
            ]
        )

        np.testing.assert_allclose(blm, blm_ref, atol=1e-7)

    def test_blm_gauss_consistency_with_gauss_beam(self):
        """Test that blm_gauss is consistent with gauss_beam.
        
        This test verifies that the blm_gauss function uses the same l(l+1) 
        formula as gauss_beam, as specified in Challinor et al. 2000 
        (astro-ph/0008228).
        """
        fwhm = np.radians(10.0 / 60.0)  # 10 arcmin in radians
        lmax = 128
        
        # Get the beam window function from gauss_beam
        beam_window = hp.gauss_beam(fwhm, lmax=lmax, pol=False)
        
        # Get the beam a_lm from blm_gauss (temperature only)
        blm = hp.blm_gauss(fwhm, lmax=lmax, pol=False)
        
        # Extract the m=0 coefficients from blm and compute the corresponding
        # beam window function. For m=0, the relationship is:
        # B_l = sqrt(4π/(2l+1)) * a_{l0}
        # where a_{l0} is the spherical harmonic coefficient
        beam_from_blm = np.zeros(lmax + 1)
        for l in range(lmax + 1):
            idx = hp.Alm.getidx(lmax, l, 0)
            beam_from_blm[l] = np.sqrt(4.0 * np.pi / (2 * l + 1)) * blm[0, idx].real
        
        # They should be identical (within numerical precision)
        np.testing.assert_allclose(beam_window, beam_from_blm, rtol=1e-10, atol=1e-15,
                                   err_msg="blm_gauss should be consistent with gauss_beam")



@pytest.mark.parametrize(
    "lmax, mmax, lmax_out, mmax_out", [(5, 5, 10, 10), (5, 5, 3, 3), (8, 5, 7, 6)]
)
def test_resize_alm(lmax, mmax, lmax_out, mmax_out):
    alm = np.random.uniform(size=hp.Alm.getsize(lmax, mmax)).astype(np.complex128)
    alm_out = hp.resize_alm(alm, lmax, mmax, lmax_out, mmax_out)
    for m in range(0, mmax + 1):
        for l in range(m, lmax + 1):
            idx1 = hp.Alm.getidx(lmax, l, m)
            if l <= lmax_out and m <= mmax_out:
                idx2 = hp.Alm.getidx(lmax_out, l, m)
                assert alm[idx1] == alm_out[idx2]
    for m in range(0, mmax_out + 1):
        for l in range(m, lmax_out + 1):
            idx2 = hp.Alm.getidx(lmax_out, l, m)
            if l <= lmax and m <= mmax:
                idx1 = hp.Alm.getidx(lmax, l, m)
                assert alm[idx1] == alm_out[idx2]
            else:
                assert alm_out[idx2] == 0
    alm_out2 = hp.resize_alm([alm, 2 * alm], lmax, mmax, lmax_out, mmax_out)
    np.testing.assert_allclose(alm_out, alm_out2[0])
    np.testing.assert_allclose(2 * alm_out, alm_out2[1])


def test_synfast_lmax_with_none():
    """Test that synfast defaults to correct lmax when one C_ell is None.
    
    This is a regression test for the bug where lmax defaulted to 3 
    (the number of array elements) instead of 3*nside-1 when one of the 
    power spectra was set to None.
    """
    # Create power spectra arrays
    lmax_cls = 10000
    c_ee = np.linspace(0, 3e-6, lmax_cls)
    c_ne = np.linspace(0, 1e-6, lmax_cls)
    c_nn = np.linspace(0, 3e-5, lmax_cls)
    
    # Test with None as last element (original bug report case)
    c_ell = [c_nn, c_ne, c_ee, None]
    nside = 256
    expected_lmax = 3 * nside - 1
    
    # Set seed for reproducibility
    np.random.seed(42)
    maps1 = hp.sphtfunc.synfast(c_ell, nside, lmax=expected_lmax, verbose=False)
    
    # Reset seed to get same random numbers
    np.random.seed(42)
    maps2 = hp.sphtfunc.synfast(c_ell, nside, verbose=False)
    
    # Both should produce the same maps since lmax should default correctly
    np.testing.assert_array_equal(maps1, maps2, 
        err_msg="synfast should default to lmax=3*nside-1 when C_ell contains None")
    
    # Also verify that the maps are not degenerate (would happen if lmax=3)
    # With proper lmax, maps should have meaningful structure
    assert maps1.shape == (3, 12*nside**2), "Output should have correct shape"
    
    # Test with None in different positions
    c_ell_first_none = [None, c_ne, c_ee, c_nn]
    np.random.seed(42)
    maps_first_none = hp.sphtfunc.synfast(c_ell_first_none, nside, verbose=False)
    assert maps_first_none.shape == (3, 12*nside**2), "Should work with None as first element"
    
    # Test with zeros array vs None should give similar structure (not identical due to randomness)
    c_ell_zeros = [c_nn, c_ne, c_ee, np.zeros(lmax_cls)]
    np.random.seed(42)
    maps_zeros = hp.sphtfunc.synfast(c_ell_zeros, nside, verbose=False)
    assert maps_zeros.shape == (3, 12*nside**2), "Should work with zeros array"