1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2019 Derick Rethans
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
| Algorithms are taken from a public domain source by Paul |
| Schlyter, who wrote this in December 1992 |
*/
#include "timelib.h"
#include <stdio.h>
#include <math.h>
#define days_since_2000_Jan_0(y,m,d) \
(367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
#ifndef PI
# define PI 3.1415926535897932384
#endif
#define RADEG ( 180.0 / PI )
#define DEGRAD ( PI / 180.0 )
/* The trigonometric functions in degrees */
#define sind(x) sin((x)*DEGRAD)
#define cosd(x) cos((x)*DEGRAD)
#define tand(x) tan((x)*DEGRAD)
#define atand(x) (RADEG*atan(x))
#define asind(x) (RADEG*asin(x))
#define acosd(x) (RADEG*acos(x))
#define atan2d(y,x) (RADEG*atan2(y,x))
/* Following are some macros around the "workhorse" function __daylen__ */
/* They mainly fill in the desired values for the reference altitude */
/* below the horizon, and also selects whether this altitude should */
/* refer to the Sun's center or its upper limb. */
#include "astro.h"
/******************************************************************/
/* This function reduces any angle to within the first revolution */
/* by subtracting or adding even multiples of 360.0 until the */
/* result is >= 0.0 and < 360.0 */
/******************************************************************/
#define INV360 (1.0 / 360.0)
/*****************************************/
/* Reduce angle to within 0..360 degrees */
/*****************************************/
static double astro_revolution(double x)
{
return (x - 360.0 * floor(x * INV360));
}
/*********************************************/
/* Reduce angle to within +180..+180 degrees */
/*********************************************/
static double astro_rev180( double x )
{
return (x - 360.0 * floor(x * INV360 + 0.5));
}
/*******************************************************************/
/* This function computes GMST0, the Greenwich Mean Sidereal Time */
/* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
/* 0h UT). GMST is then the sidereal time at Greenwich at any */
/* time of the day. I've generalized GMST0 as well, and define it */
/* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
/* other times than 0h UT as well. While this sounds somewhat */
/* contradictory, it is very practical: instead of computing */
/* GMST like: */
/* */
/* GMST = (GMST0) + UT * (366.2422/365.2422) */
/* */
/* where (GMST0) is the GMST last time UT was 0 hours, one simply */
/* computes: */
/* */
/* GMST = GMST0 + UT */
/* */
/* where GMST0 is the GMST "at 0h UT" but at the current moment! */
/* Defined in this way, GMST0 will increase with about 4 min a */
/* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
/* is equal to the Sun's mean longitude plus/minus 180 degrees! */
/* (if we neglect aberration, which amounts to 20 seconds of arc */
/* or 1.33 seconds of time) */
/* */
/*******************************************************************/
static double astro_GMST0(double d)
{
double sidtim0;
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
/* add these numbers, I'll let the C compiler do it for me. */
/* Any decent C compiler will add the constants at compile */
/* time, imposing no runtime or code overhead. */
sidtim0 = astro_revolution((180.0 + 356.0470 + 282.9404) + (0.9856002585 + 4.70935E-5) * d);
return sidtim0;
}
/* This function computes the Sun's position at any instant */
/******************************************************/
/* Computes the Sun's ecliptic longitude and distance */
/* at an instant given in d, number of days since */
/* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
/* computed, since it's always very near 0. */
/******************************************************/
static void astro_sunpos(double d, double *lon, double *r)
{
double M, /* Mean anomaly of the Sun */
w, /* Mean longitude of perihelion */
/* Note: Sun's mean longitude = M + w */
e, /* Eccentricity of Earth's orbit */
E, /* Eccentric anomaly */
x, y, /* x, y coordinates in orbit */
v; /* True anomaly */
/* Compute mean elements */
M = astro_revolution(356.0470 + 0.9856002585 * d);
w = 282.9404 + 4.70935E-5 * d;
e = 0.016709 - 1.151E-9 * d;
/* Compute true longitude and radius vector */
E = M + e * RADEG * sind(M) * (1.0 + e * cosd(M));
x = cosd(E) - e;
y = sqrt(1.0 - e*e) * sind(E);
*r = hypot(x, y); /* Solar distance */
v = atan2d(y, x); /* True anomaly */
*lon = v + w; /* True solar longitude */
if (*lon >= 360.0) {
*lon -= 360.0; /* Make it 0..360 degrees */
}
}
static void astro_sun_RA_dec(double d, double *RA, double *dec, double *r)
{
double lon, obl_ecl, x, y, z;
/* Compute Sun's ecliptical coordinates */
astro_sunpos(d, &lon, r);
/* Compute ecliptic rectangular coordinates (z=0) */
x = *r * cosd(lon);
y = *r * sind(lon);
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
obl_ecl = 23.4393 - 3.563E-7 * d;
/* Convert to equatorial rectangular coordinates - x is unchanged */
z = y * sind(obl_ecl);
y = y * cosd(obl_ecl);
/* Convert to spherical coordinates */
*RA = atan2d(y, x);
*dec = atan2d(z, hypot(x, y));
}
/**
* Note: timestamp = unixtimestamp (NEEDS to be 00:00:00 UT)
* Eastern longitude positive, Western longitude negative
* Northern latitude positive, Southern latitude negative
* The longitude value IS critical in this function!
* altit = the altitude which the Sun should cross
* Set to -35/60 degrees for rise/set, -6 degrees
* for civil, -12 degrees for nautical and -18
* degrees for astronomical twilight.
* upper_limb: non-zero -> upper limb, zero -> center
* Set to non-zero (e.g. 1) when computing rise/set
* times, and to zero when computing start/end of
* twilight.
* *rise = where to store the rise time
* *set = where to store the set time
* Both times are relative to the specified altitude,
* and thus this function can be used to compute
* various twilight times, as well as rise/set times
* Return value: 0 = sun rises/sets this day, times stored at
* *trise and *tset.
* +1 = sun above the specified "horizon" 24 hours.
* *trise set to time when the sun is at south,
* minus 12 hours while *tset is set to the south
* time plus 12 hours. "Day" length = 24 hours
* -1 = sun is below the specified "horizon" 24 hours
* "Day" length = 0 hours, *trise and *tset are
* both set to the time when the sun is at south.
*
*/
int timelib_astro_rise_set_altitude(timelib_time *t_loc, double lon, double lat, double altit, int upper_limb, double *h_rise, double *h_set, timelib_sll *ts_rise, timelib_sll *ts_set, timelib_sll *ts_transit)
{
double d, /* Days since 2000 Jan 0.0 (negative before) */
sr, /* Solar distance, astronomical units */
sRA, /* Sun's Right Ascension */
sdec, /* Sun's declination */
sradius, /* Sun's apparent radius */
t, /* Diurnal arc */
tsouth, /* Time when Sun is at south */
sidtime; /* Local sidereal time */
timelib_time *t_utc;
timelib_sll timestamp, old_sse;
int rc = 0; /* Return cde from function - usually 0 */
/* Normalize time */
old_sse = t_loc->sse;
t_loc->h = 12;
t_loc->i = t_loc->s = 0;
timelib_update_ts(t_loc, NULL);
/* Calculate TS belonging to UTC 00:00 of the current day, for input into
* the algorithm */
t_utc = timelib_time_ctor();
t_utc->y = t_loc->y;
t_utc->m = t_loc->m;
t_utc->d = t_loc->d;
t_utc->h = t_utc->i = t_utc->s = 0;
timelib_update_ts(t_utc, NULL);
/* Compute d of 12h local mean solar time */
timestamp = t_utc->sse;
d = timelib_ts_to_j2000(timestamp) + 2 - lon/360.0;
/* Compute local sidereal time of this moment */
sidtime = astro_revolution(astro_GMST0(d) + 180.0 + lon);
/* Compute Sun's RA + Decl at this moment */
astro_sun_RA_dec( d, &sRA, &sdec, &sr );
/* Compute time when Sun is at south - in hours UT */
tsouth = 12.0 - astro_rev180(sidtime - sRA) / 15.0;
/* Compute the Sun's apparent radius, degrees */
sradius = 0.2666 / sr;
/* Do correction to upper limb, if necessary */
if (upper_limb) {
altit -= sradius;
}
/* Compute the diurnal arc that the Sun traverses to reach */
/* the specified altitude altit: */
{
double cost;
cost = (sind(altit) - sind(lat) * sind(sdec)) / (cosd(lat) * cosd(sdec));
*ts_transit = t_utc->sse + (tsouth * 3600);
if (cost >= 1.0) {
rc = -1;
t = 0.0; /* Sun always below altit */
*ts_rise = *ts_set = t_utc->sse + (tsouth * 3600);
} else if (cost <= -1.0) {
rc = +1;
t = 12.0; /* Sun always above altit */
*ts_rise = t_loc->sse - (12 * 3600);
*ts_set = t_loc->sse + (12 * 3600);
} else {
t = acosd(cost) / 15.0; /* The diurnal arc, hours */
/* Store rise and set times - as Unix Timestamp */
*ts_rise = ((tsouth - t) * 3600) + t_utc->sse;
*ts_set = ((tsouth + t) * 3600) + t_utc->sse;
*h_rise = (tsouth - t);
*h_set = (tsouth + t);
}
}
/* Kill temporary time and restore original sse */
timelib_time_dtor(t_utc);
t_loc->sse = old_sse;
return rc;
}
double timelib_ts_to_julianday(timelib_sll ts)
{
double tmp;
tmp = (double) ts;
tmp /= (double) 86400;
tmp += (double) 2440587.5;
return tmp;
}
double timelib_ts_to_j2000(timelib_sll ts)
{
return timelib_ts_to_julianday(ts) - 2451545;
}
|