1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
/*
* Copyright (c) 2011, Secure Endpoints Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "baselocl.h"
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_IO_H
#include <io.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <fcntl.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#include <errno.h>
#include <assert.h>
/*
* This file contains functions for binary searching flat text in memory
* and in text files where each line is a [variable length] record.
* Each record has a key and an optional value separated from the key by
* unquoted whitespace. Whitespace in the key, and leading whitespace
* for the value, can be quoted with backslashes (but CR and LF must be
* quoted in such a way that they don't appear in the quoted result).
*
* Binary searching a tree are normally a dead simple algorithm. It
* turns out that binary searching flat text with *variable* length
* records is... tricky. There's no indexes to record beginning bytes,
* thus any index selected during the search is likely to fall in the
* middle of a record. When deciding to search a left sub-tree one
* might fail to find the last record in that sub-tree on account of the
* right boundary falling in the middle of it -- the chosen solution to
* this makes left sub-tree searches slightly less efficient than right
* sub-tree searches.
*
* If binary searching flat text in memory is tricky, using block-wise
* I/O instead is trickier! But it's necessary in order to support
* large files (which we either can't or wouldn't want to read or map
* into memory). Each block we read has to be large enough that the
* largest record can fit in it. And each block might start and/or end
* in the middle of a record. Here it is the right sub-tree searches
* that are less efficient than left sub-tree searches.
*
* bsearch_common() contains the common text block binary search code.
*
* _bsearch_text() is the interface for searching in-core text.
* _bsearch_file() is the interface for block-wise searching files.
*/
struct bsearch_file_handle {
int fd; /* file descriptor */
char *cache; /* cache bytes */
char *page; /* one double-size page worth of bytes */
size_t file_sz; /* file size */
size_t cache_sz; /* cache size */
size_t page_sz; /* page size */
};
/* Find a new-line */
static const char *
find_line(const char *buf, size_t i, size_t right)
{
if (i == 0)
return &buf[i];
for (; i < right; i++) {
if (buf[i] == '\n') {
if ((i + 1) < right)
return &buf[i + 1];
return NULL;
}
}
return NULL;
}
/*
* Common routine for binary searching text in core.
*
* Perform a binary search of a char array containing a block from a
* text file where each line is a record (LF and CRLF supported). Each
* record consists of a key followed by an optional value separated from
* the key by whitespace. Whitespace can be quoted with backslashes.
* It's the caller's responsibility to encode/decode keys/values if
* quoting is desired; newlines should be encoded such that a newline
* does not appear in the result.
*
* All output arguments are optional.
*
* Returns 0 if key is found, -1 if not found, or an error code such as
* ENOMEM in case of error.
*
* Inputs:
*
* @buf String to search
* @sz Size of string to search
* @key Key string to search for
* @buf_is_start True if the buffer starts with a record, false if it
* starts in the middle of a record or if the caller
* doesn't know.
*
* Outputs:
*
* @value Location to store a copy of the value (caller must free)
* @location Record location if found else the location where the
* record should be inserted (index into @buf)
* @cmp Set to less than or greater than 0 to indicate that a
* key not found would have fit in an earlier or later
* part of a file. Callers should use this to decide
* whether to read a block to the left or to the right and
* search that.
* @loops Location to store a count of bisections required for
* search (useful for confirming logarithmic performance)
*/
static int
bsearch_common(const char *buf, size_t sz, const char *key,
int buf_is_start, char **value, size_t *location,
int *cmp, size_t *loops)
{
const char *linep;
size_t key_start, key_len; /* key string in buf */
size_t val_start, val_len; /* value string in buf */
int key_cmp = -1;
size_t k;
size_t l; /* left side of buffer for binary search */
size_t r; /* right side of buffer for binary search */
size_t rmax; /* right side of buffer for binary search */
size_t i; /* index into buffer, typically in the middle of l and r */
size_t loop_count = 0;
int ret = -1;
if (value)
*value = NULL;
if (cmp)
*cmp = 0;
if (loops)
*loops = 0;
/* Binary search; file should be sorted */
for (l = 0, r = rmax = sz, i = sz >> 1; i >= l && i < rmax; loop_count++) {
heim_assert(i < sz, "invalid aname2lname db index");
/* buf[i] is likely in the middle of a line; find the next line */
linep = find_line(buf, i, rmax);
k = linep ? linep - buf : i;
if (linep == NULL || k >= rmax) {
/*
* No new line found to the right; search to the left then
* but don't change rmax (this isn't optimal, but it's
* simple).
*/
if (i == l)
break;
r = i;
i = l + ((r - l) >> 1);
continue;
}
i = k;
heim_assert(i >= l && i < rmax, "invalid aname2lname db index");
/* Got a line; check it */
/* Search for and split on unquoted whitespace */
val_start = 0;
for (key_start = i, key_len = 0, val_len = 0, k = i; k < rmax; k++) {
if (buf[k] == '\\') {
k++;
continue;
}
if (buf[k] == '\r' || buf[k] == '\n') {
/* We now know where the key ends, and there's no value */
key_len = k - i;
break;
}
if (!isspace((unsigned char)buf[k]))
continue;
while (k < rmax && isspace((unsigned char)buf[k])) {
key_len = k - i;
k++;
}
if (k < rmax)
val_start = k;
/* Find end of value */
for (; k < rmax && buf[k] != '\0'; k++) {
if (buf[k] == '\r' || buf[k] == '\n') {
val_len = k - val_start;
break;
}
}
break;
}
/*
* The following logic is for dealing with partial buffers,
* which we use for block-wise binary searches of large files
*/
if (key_start == 0 && !buf_is_start) {
/*
* We're at the beginning of a block that might have started
* in the middle of a record whose "key" might well compare
* as greater than the key we're looking for, so we don't
* bother comparing -- we know key_cmp must be -1 here.
*/
key_cmp = -1;
break;
}
if ((val_len && buf[val_start + val_len] != '\n') ||
(!val_len && buf[key_start + key_len] != '\n')) {
/*
* We're at the end of a block that ends in the middle of a
* record whose "key" might well compare as less than the
* key we're looking for, so we don't bother comparing -- we
* know key_cmp must be >= 0 but we can't tell. Our caller
* will end up reading a double-size block to handle this.
*/
key_cmp = 1;
break;
}
key_cmp = strncmp(key, &buf[key_start], key_len);
if (key_cmp == 0 && strlen(key) != key_len)
key_cmp = 1;
if (key_cmp < 0) {
/* search left */
r = rmax = (linep - buf);
i = l + ((r - l) >> 1);
if (location)
*location = key_start;
} else if (key_cmp > 0) {
/* search right */
if (l == i)
break; /* not found */
l = i;
i = l + ((r - l) >> 1);
if (location)
*location = val_start + val_len;
} else {
/* match! */
if (location)
*location = key_start;
ret = 0;
if (val_len && value) {
/* Avoid strndup() so we don't need libroken here yet */
*value = malloc(val_len + 1);
if (!*value)
ret = errno;
(void) memcpy(*value, &buf[val_start], val_len);
(*value)[val_len] = '\0';
}
break;
}
}
if (cmp)
*cmp = key_cmp;
if (loops)
*loops = loop_count;
return ret;
}
/*
* Binary search a char array containing sorted text records separated
* by new-lines (or CRLF). Each record consists of a key and an
* optional value following the key, separated from the key by unquoted
* whitespace.
*
* All output arguments are optional.
*
* Returns 0 if key is found, -1 if not found, or an error code such as
* ENOMEM in case of error.
*
* Inputs:
*
* @buf Char array pointer
* @buf_sz Size of buf
* @key Key to search for
*
* Outputs:
*
* @value Location where to put the value, if any (caller must free)
* @location Record location if found else the location where the record
* should be inserted (index into @buf)
* @loops Location where to put a number of loops (or comparisons)
* needed for the search (useful for benchmarking)
*/
int
_bsearch_text(const char *buf, size_t buf_sz, const char *key,
char **value, size_t *location, size_t *loops)
{
return bsearch_common(buf, buf_sz, key, 1, value, location, NULL, loops);
}
#define MAX_BLOCK_SIZE (1024 * 1024)
#define DEFAULT_MAX_FILE_SIZE (1024 * 1024)
/*
* Open a file for binary searching. The file will be read in entirely
* if it is smaller than @max_sz, else a cache of @max_sz bytes will be
* allocated.
*
* Returns 0 on success, else an error number or -1 if the file is empty.
*
* Inputs:
*
* @fname Name of file to open
* @max_sz Maximum size of cache to allocate, in bytes (if zero, default)
* @page_sz Page size (must be a power of two, larger than 256, smaller
* than 1MB; if zero use default)
*
* Outputs:
*
* @bfh Handle for use with _bsearch_file() and _bsearch_file_close()
* @reads Number of reads performed
*/
int
_bsearch_file_open(const char *fname, size_t max_sz, size_t page_sz,
bsearch_file_handle *bfh, size_t *reads)
{
bsearch_file_handle new_bfh = NULL;
struct stat st;
size_t i;
int fd;
int ret;
*bfh = NULL;
if (reads)
*reads = 0;
fd = open(fname, O_RDONLY);
if (fd == -1)
return errno;
if (fstat(fd, &st) == -1) {
ret = errno;
goto err;
}
if (st.st_size == 0) {
ret = -1; /* no data -> no binary search */
goto err;
}
/* Validate / default arguments */
if (max_sz == 0)
max_sz = DEFAULT_MAX_FILE_SIZE;
for (i = page_sz; i; i >>= 1) {
/* Make sure page_sz is a power of two */
if ((i % 2) && (i >> 1)) {
page_sz = 0;
break;
}
}
if (page_sz == 0)
#ifdef HAVE_STRUCT_STAT_ST_BLKSIZE
page_sz = st.st_blksize;
#else
page_sz = 4096;
#endif
for (i = page_sz; i; i >>= 1) {
/* Make sure page_sz is a power of two */
if ((i % 2) && (i >> 1)) {
/* Can't happen! Filesystems always use powers of two! */
page_sz = 4096;
break;
}
}
if (page_sz > MAX_BLOCK_SIZE)
page_sz = MAX_BLOCK_SIZE;
new_bfh = calloc(1, sizeof (*new_bfh));
if (new_bfh == NULL) {
ret = ENOMEM;
goto err;
}
new_bfh->fd = fd;
new_bfh->page_sz = page_sz;
new_bfh->file_sz = st.st_size;
if (max_sz >= st.st_size) {
/* Whole-file method */
new_bfh->cache = malloc(st.st_size + 1);
if (new_bfh->cache) {
new_bfh->cache[st.st_size] = '\0';
new_bfh->cache_sz = st.st_size;
ret = read(fd, new_bfh->cache, st.st_size);
if (ret < 0) {
ret = errno;
goto err;
}
if (ret != st.st_size) {
ret = EIO; /* XXX ??? */
goto err;
}
if (reads)
*reads = 1;
(void) close(fd);
new_bfh->fd = -1;
*bfh = new_bfh;
return 0;
}
}
/* Block-size method, or above malloc() failed */
new_bfh->page = malloc(new_bfh->page_sz << 1);
if (new_bfh->page == NULL) {
/* Can't even allocate a single double-size page! */
ret = ENOMEM;
goto err;
}
new_bfh->cache_sz = max_sz < st.st_size ? max_sz : st.st_size;
new_bfh->cache = malloc(new_bfh->cache_sz);
*bfh = new_bfh;
/*
* malloc() may have failed because we were asking for a lot of
* memory, but we may still be able to operate without a cache,
* so let's not fail.
*/
if (new_bfh->cache == NULL) {
new_bfh->cache_sz = 0;
return 0;
}
/* Initialize cache */
for (i = 0; i < new_bfh->cache_sz; i += new_bfh->page_sz)
new_bfh->cache[i] = '\0';
return 0;
err:
(void) close(fd);
if (new_bfh) {
free(new_bfh->page);
free(new_bfh->cache);
free(new_bfh);
}
return ret;
}
/*
* Indicate whether the given binary search file handle will be searched
* with block-wise method.
*/
void
_bsearch_file_info(bsearch_file_handle bfh,
size_t *page_sz, size_t *max_sz, int *blockwise)
{
if (page_sz)
*page_sz = bfh->page_sz;
if (max_sz)
*max_sz = bfh->cache_sz;
if (blockwise)
*blockwise = (bfh->file_sz != bfh->cache_sz);
}
/*
* Close the given binary file search handle.
*
* Inputs:
*
* @bfh Pointer to variable containing handle to close.
*/
void
_bsearch_file_close(bsearch_file_handle *bfh)
{
if (!*bfh)
return;
if ((*bfh)->fd >= 0)
(void) close((*bfh)->fd);
if ((*bfh)->page)
free((*bfh)->page);
if ((*bfh)->cache)
free((*bfh)->cache);
free(*bfh);
*bfh = NULL;
}
/*
* Private function to get a page from a cache. The cache is a char
* array of 2^n - 1 double-size page worth of bytes, where n is the
* number of tree levels that the cache stores. The cache can be
* smaller than n implies.
*
* The page may or may not be valid. If the first byte of it is NUL
* then it's not valid, else it is.
*
* Returns 1 if page is in cache and valid, 0 if the cache is too small
* or the page is invalid. The page address is output in @buf if the
* cache is large enough to contain it regardless of whether the page is
* valid.
*
* Inputs:
*
* @bfh Binary search file handle
* @level Level in the tree that we want a page for
* @page_idx Page number in the given level (0..2^level - 1)
*
* Outputs:
*
* @buf Set to address of page if the cache is large enough
*/
static int
get_page_from_cache(bsearch_file_handle bfh, size_t level, size_t page_idx,
char **buf)
{
size_t idx = 0;
size_t page_sz;
page_sz = bfh->page_sz << 1; /* we use double-size pages in the cache */
*buf = NULL;
/*
* Compute index into cache. The cache is basically an array of
* double-size pages. The first (zeroth) double-size page in the
* cache will be the middle page of the file -- the root of the
* tree. The next two double-size pages will be the left and right
* pages of the second level in the tree. The next four double-size
* pages will be the four pages at the next level. And so on for as
* many pages as fit in the cache.
*
* The page index is the number of the page at the given level. We
* then compute (2^level - 1 + page index) * 2page size, check that
* we have that in the cache, check that the page has been read (it
* doesn't start with NUL).
*/
if (level)
idx = (1 << level) - 1 + page_idx;
if (((idx + 1) * page_sz * 2) > bfh->cache_sz)
return 0;
*buf = &bfh->cache[idx * page_sz * 2];
if (bfh->cache[idx * page_sz * 2] == '\0')
return 0; /* cache[idx] == NUL -> page not loaded in cache */
return 1;
}
/*
* Private function to read a page of @page_sz from @fd at offset @off
* into @buf, outputing the number of bytes read, which will be the same
* as @page_sz unless the page being read is the last page, in which
* case the number of remaining bytes in the file will be output.
*
* Returns 0 on success or an errno value otherwise (EIO if reads are
* short).
*
* Inputs:
*
* @bfh Binary search file handle
* @level Level in the binary search tree that we're at
* @page_idx Page "index" at the @level of the tree that we want
* @page Actual page number that we want
* want_double Whether we need a page or double page read
*
* Outputs:
*
* @buf Page read or cached
* @bytes Bytes read (may be less than page or double page size in
* the case of the last page, of course)
*/
static int
read_page(bsearch_file_handle bfh, size_t level, size_t page_idx, size_t page,
int want_double, const char **buf, size_t *bytes)
{
int ret;
off_t off;
size_t expected;
size_t wanted;
char *page_buf;
/* Figure out where we're reading and how much */
off = page * bfh->page_sz;
if (off < 0)
return EOVERFLOW;
wanted = bfh->page_sz << want_double;
expected = ((bfh->file_sz - off) > wanted) ? wanted : bfh->file_sz - off;
if (get_page_from_cache(bfh, level, page_idx, &page_buf)) {
*buf = page_buf;
*bytes = expected;
return 0; /* found in cache */
}
*bytes = 0;
*buf = NULL;
/* OK, we have to read a page or double-size page */
if (page_buf)
want_double = 1; /* we'll be caching; we cache double-size pages */
else
page_buf = bfh->page; /* we won't cache this page */
wanted = bfh->page_sz << want_double;
expected = ((bfh->file_sz - off) > wanted) ? wanted : bfh->file_sz - off;
#ifdef HAVE_PREAD
ret = pread(bfh->fd, page_buf, expected, off);
#else
if (lseek(bfh->fd, off, SEEK_SET) == (off_t)-1)
return errno;
ret = read(bfh->fd, page_buf, expected);
#endif
if (ret < 0)
return errno;
if (ret != expected)
return EIO; /* XXX ??? */
*buf = page_buf;
*bytes = expected;
return 0;
}
/*
* Perform a binary search of a file where each line is a record (LF and
* CRLF supported). Each record consists of a key followed by an
* optional value separated from the key by whitespace. Whitespace can
* be quoted with backslashes. It's the caller's responsibility to
* encode/decode keys/values if quoting is desired; newlines should be
* encoded such that a newline does not appear in the result.
*
* The search is done with block-wise I/O (i.e., the whole file is not
* read into memory).
*
* All output arguments are optional.
*
* Returns 0 if key is found, -1 if not found, or an error code such as
* ENOMEM in case of error.
*
* NOTE: We could improve this by not freeing the buffer, instead
* requiring that the caller provide it. Further, we could cache
* the top N levels of [double-size] pages (2^N - 1 pages), which
* should speed up most searches by reducing the number of reads
* by N.
*
* Inputs:
*
* @fd File descriptor (file to search)
* @page_sz Page size (if zero then the file's st_blksize will be used)
* @key Key string to search for
*
* Outputs:
*
* @value Location to store a copy of the value (caller must free)
* @location Record location if found else the location where the
* record should be inserted (index into @buf)
* @loops Location to store a count of bisections required for
* search (useful for confirming logarithmic performance)
* @reads Location to store a count of pages read during search
* (useful for confirming logarithmic performance)
*/
int
_bsearch_file(bsearch_file_handle bfh, const char *key,
char **value, size_t *location, size_t *loops, size_t *reads)
{
int ret;
const char *buf;
size_t buf_sz;
size_t page, l, r;
size_t my_reads = 0;
size_t my_loops_total = 0;
size_t my_loops;
size_t level; /* level in the tree */
size_t page_idx = 0; /* page number in the tree level */
size_t buf_location;
int cmp;
int buf_ends_in_eol = 0;
int buf_is_start = 0;
if (reads)
*reads = 0;
/* If whole file is in memory then search that and we're done */
if (bfh->file_sz == bfh->cache_sz)
return _bsearch_text(bfh->cache, bfh->cache_sz, key, value, location, loops);
/* Else block-wise binary search */
if (value)
*value = NULL;
if (loops)
*loops = 0;
l = 0;
r = (bfh->file_sz / bfh->page_sz) + 1;
for (level = 0, page = r >> 1; page >= l && page < r ; level++) {
ret = read_page(bfh, level, page_idx, page, 0, &buf, &buf_sz);
if (ret != 0)
return ret;
my_reads++;
if (buf[buf_sz - 1] == '\r' || buf[buf_sz - 1] == '\n')
buf_ends_in_eol = 1;
else
buf_ends_in_eol = 0;
buf_is_start = page == 0 ? 1 : 0;
ret = bsearch_common(buf, (size_t)buf_sz, key, buf_is_start,
value, &buf_location, &cmp, &my_loops);
if (ret > 0)
return ret;
/* Found or no we update stats */
my_loops_total += my_loops;
if (loops)
*loops = my_loops_total;
if (reads)
*reads = my_reads;
if (location)
*location = page * bfh->page_sz + buf_location;
if (ret == 0)
return 0; /* found! */
/* Not found */
if (cmp < 0) {
/* Search left */
page_idx <<= 1;
r = page;
page = l + ((r - l) >> 1);
continue;
} else {
/*
* Search right, but first search the current and next
* blocks in case that the record we're looking for either
* straddles the boundary between this and the next record,
* or in case the record starts exactly at the next page.
*/
heim_assert(cmp > 0, "cmp > 0");
if (!buf_ends_in_eol || page == l || page == (r - 1)) {
ret = read_page(bfh, level, page_idx, page, 1, &buf, &buf_sz);
if (ret != 0)
return ret;
my_reads++;
buf_is_start = page == l ? 1 : 0;
ret = bsearch_common(buf, (size_t)buf_sz, key, buf_is_start,
value, &buf_location, &cmp, &my_loops);
if (ret > 0)
return ret;
my_loops_total += my_loops;
if (loops)
*loops = my_loops_total;
if (reads)
*reads = my_reads;
if (location)
*location = page * bfh->page_sz + buf_location;
if (ret == 0)
return 0;
}
/* Oh well, search right */
if (l == page && r == (l + 1))
break;
page_idx = (page_idx << 1) + 1;
l = page;
page = l + ((r - l) >> 1);
continue;
}
}
return -1;
}
static int
stdb_open(void *plug, const char *dbtype, const char *dbname,
heim_dict_t options, void **db, heim_error_t *error)
{
bsearch_file_handle bfh;
char *p;
int ret;
if (error)
*error = NULL;
if (dbname == NULL || *dbname == '\0') {
if (error)
*error = heim_error_create(EINVAL,
N_("DB name required for sorted-text DB "
"plugin", ""));
return EINVAL;
}
p = strrchr(dbname, '.');
if (p == NULL || strcmp(p, ".txt") != 0) {
if (error)
*error = heim_error_create(ENOTSUP,
N_("Text file (name ending in .txt) "
"required for sorted-text DB plugin",
""));
return ENOTSUP;
}
ret = _bsearch_file_open(dbname, 0, 0, &bfh, NULL);
if (ret)
return ret;
*db = bfh;
return 0;
}
static int
stdb_close(void *db, heim_error_t *error)
{
bsearch_file_handle bfh = db;
if (error)
*error = NULL;
_bsearch_file_close(&bfh);
return 0;
}
static heim_data_t
stdb_copy_value(void *db, heim_string_t table, heim_data_t key,
heim_error_t *error)
{
bsearch_file_handle bfh = db;
const char *k;
char *v;
heim_data_t value;
int ret;
if (error)
*error = NULL;
if (table == NULL)
table = HSTR("");
if (table != HSTR(""))
return NULL;
if (heim_get_tid(key) == HEIM_TID_STRING)
k = heim_string_get_utf8((heim_string_t)key);
else
k = (const char *)heim_data_get_ptr(key);
ret = _bsearch_file(bfh, k, &v, NULL, NULL, NULL);
if (ret != 0) {
if (ret > 0 && error)
*error = heim_error_create(ret, "%s", strerror(ret));
return NULL;
}
value = heim_data_create(v, strlen(v));
free(v);
/* XXX Handle ENOMEM */
return value;
}
struct heim_db_type heim_sorted_text_file_dbtype = {
1, stdb_open, NULL, stdb_close, NULL, NULL, NULL, NULL, NULL, NULL,
stdb_copy_value, NULL, NULL, NULL
};
|