1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: gain.c,v 1.2.4.1 2004/07/09 02:02:24 hubbe Exp $
*
* Portions Copyright (c) 1995-2004 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU General Public License Version 2 or later (the
* "GPL") in which case the provisions of the GPL are applicable
* instead of those above. If you wish to allow use of your version of
* this file only under the terms of the GPL, and not to allow others
* to use your version of this file under the terms of either the RPSL
* or RCSL, indicate your decision by deleting the provisions above
* and replace them with the notice and other provisions required by
* the GPL. If you do not delete the provisions above, a recipient may
* use your version of this file under the terms of any one of the
* RPSL, the RCSL or the GPL.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
#include <stdlib.h>
#include <math.h>
#include "hxassert.h"
#include "gain.h"
#include "math64.h"
struct GAIN_STATE
{
int sampleRate ;
int nChannels ;
int headRoom ;
INT32 instGain ; /* gain applied right now */
INT32 tgtGain ; /* in a smooth gain change, the gain we are aiming for */
int shift ;
} ;
enum
{
zeroDBGain = (1L<<30)
} ;
GAIN_STATE* gainInit(int sampleRate, int nChannels, int headRoom)
{
GAIN_STATE* g = (GAIN_STATE*) calloc(1,sizeof(GAIN_STATE)) ;
if (g)
{
g->sampleRate = sampleRate ;
g->nChannels = nChannels ;
g->headRoom = headRoom ;
gainSetTimeConstant(0.1f, g) ;
}
return g ;
}
void gainFree(GAIN_STATE* g)
{
if (g) free(g) ;
}
float gainSetSmooth(float dB, GAIN_STATE* g)
{
unsigned int gain = (unsigned int)(0.5 + (double)(1UL<<(30-g->headRoom)) * pow(10.0, 0.05*dB)) ;
if (dB > 20.0 * log10(1<<g->headRoom))
{
gain = zeroDBGain; dB = 20.0f * (float)log10(1<<g->headRoom) ; // avoid overflow
}
g->tgtGain = (INT32)gain ;
return dB ;
}
float gainSetImmediate(float dB, GAIN_STATE* g)
{
dB = gainSetSmooth(dB, g) ;
g->instGain = g->tgtGain ; // make it instantaneous
return dB ;
}
int gainSetTimeConstant(float millis, GAIN_STATE* g)
{
// we define the time constant millis so that the signal has decayed to 1/2 (-6dB) after
// millis milliseconds have elapsed.
// Let T[sec] = millis/1000 = time constant in units of seconds
//
// => (1-2^-s)^(T[sec]*sr) = 1/2
// => 1-2^-s = (1/2)^(1/(T[sec]*sr))
// => 2^-s = 1 - (1/2)^(1/(T[sec]*sr))
// => s = -log2(1 - (1/2)^(1 / (T[sec]*sr)))
// first 0.5 is rounding constant
g->shift = (int)(0.5 - 1.0/log(2.0)*log(1.0 - pow(0.5, 1000.0/(millis * g->sampleRate)))) ;
if (g->shift < 1)
g->shift = 1 ;
if (g->shift > 31)
g->shift = 31 ;
return 1 ; // OK
}
static void gainFeedMono(INT32* signal, int nSamples, GAIN_STATE *g)
{
INT32 tgtGain = g->tgtGain ;
INT32 gain = g->instGain ;
INT32 *bufferEnd = signal + nSamples ;
if (gain == tgtGain)
{ // steady state
while (signal != bufferEnd)
{
*signal = MulShift30(*signal, gain) ; signal++ ;
}
}
else
{ // while we are still ramping the gain
int shift = g->shift ;
while (signal != bufferEnd)
{
int rc = (tgtGain > gain) - (tgtGain < gain) ; // -1,0,1 for x<y, x=y, x>y
*signal = MulShift30(*signal, gain) ; signal++ ;
gain += ((tgtGain-gain) >> shift) + rc ;
}
g->instGain = gain ;
}
}
static void gainFeedStereo(INT32* signal, int nSamples, GAIN_STATE *g)
{
INT32 tgtGain = g->tgtGain ;
INT32 gain = g->instGain ;
INT32 *bufferEnd = signal + nSamples ;
HX_ASSERT(nSamples % 2 == 0);
if (gain == tgtGain)
{ // steady state
while (signal != bufferEnd)
{
*signal = MulShift30(*signal, gain) ; signal++ ;
*signal = MulShift30(*signal, gain) ; signal++ ;
}
}
else
{ // while we are still ramping the gain
int shift = g->shift ;
while (signal != bufferEnd)
{
int rc = (tgtGain > gain) - (tgtGain < gain) ; // -1,0,1 for x<y, x=y, x>y
*signal = MulShift30(*signal, gain) ; signal++ ;
*signal = MulShift30(*signal, gain) ; signal++ ;
gain += ((tgtGain-gain) >> shift) + rc ;
}
g->instGain = gain ;
}
}
static void gainFeedMulti(INT32* signal, int nSamples, GAIN_STATE *g)
{
INT32 tgtGain = g->tgtGain ;
INT32 gain = g->instGain ;
INT32 *bufferEnd = signal + nSamples ;
HX_ASSERT(nSamples % g->nChannels == 0);
if (gain == tgtGain)
{ // steady state
while (signal != bufferEnd)
{
int i ;
for (i = 0 ; i < g->nChannels ; i++)
{
*signal = MulShift30(*signal, gain) ; signal++ ;
}
}
}
else
{ // while we are still ramping the gain
int shift = g->shift ;
while (signal != bufferEnd)
{
int rc = (tgtGain > gain) - (tgtGain < gain) ; // -1,0,1 for x<y, x=y, x>y
int i ;
for (i = 0 ; i < g->nChannels ; i++)
{
*signal = MulShift30(*signal, gain) ; signal++ ;
}
gain += ((tgtGain-gain) >> shift) + rc ;
}
g->instGain = gain ;
}
}
void gainFeed(INT32* signal, int nSamples, GAIN_STATE* g)
{
/* if the gain is 0dB, and we are not currently ramping, shortcut. */
if (g->instGain == zeroDBGain && g->instGain == g->tgtGain)
{
return ;
}
switch (g->nChannels)
{
case 1:
gainFeedMono(signal, nSamples, g) ;
break ;
case 2:
gainFeedStereo(signal, nSamples, g) ;
break ;
default:
gainFeedMulti(signal, nSamples, g) ;
break ;
}
}
|