File: gain.c

package info (click to toggle)
helix-player 1.0.8-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 88,396 kB
  • ctags: 93,057
  • sloc: cpp: 569,980; ansic: 187,604; python: 22,761; sh: 5,928; asm: 4,270; xml: 876; pascal: 536; objc: 525; makefile: 281; perl: 54
file content (246 lines) | stat: -rwxr-xr-x 7,145 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* ***** BEGIN LICENSE BLOCK *****
 * Source last modified: $Id: gain.c,v 1.2.4.1 2004/07/09 02:02:24 hubbe Exp $
 * 
 * Portions Copyright (c) 1995-2004 RealNetworks, Inc. All Rights Reserved.
 * 
 * The contents of this file, and the files included with this file,
 * are subject to the current version of the RealNetworks Public
 * Source License (the "RPSL") available at
 * http://www.helixcommunity.org/content/rpsl unless you have licensed
 * the file under the current version of the RealNetworks Community
 * Source License (the "RCSL") available at
 * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
 * will apply. You may also obtain the license terms directly from
 * RealNetworks.  You may not use this file except in compliance with
 * the RPSL or, if you have a valid RCSL with RealNetworks applicable
 * to this file, the RCSL.  Please see the applicable RPSL or RCSL for
 * the rights, obligations and limitations governing use of the
 * contents of the file.
 * 
 * Alternatively, the contents of this file may be used under the
 * terms of the GNU General Public License Version 2 or later (the
 * "GPL") in which case the provisions of the GPL are applicable
 * instead of those above. If you wish to allow use of your version of
 * this file only under the terms of the GPL, and not to allow others
 * to use your version of this file under the terms of either the RPSL
 * or RCSL, indicate your decision by deleting the provisions above
 * and replace them with the notice and other provisions required by
 * the GPL. If you do not delete the provisions above, a recipient may
 * use your version of this file under the terms of any one of the
 * RPSL, the RCSL or the GPL.
 * 
 * This file is part of the Helix DNA Technology. RealNetworks is the
 * developer of the Original Code and owns the copyrights in the
 * portions it created.
 * 
 * This file, and the files included with this file, is distributed
 * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
 * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
 * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
 * ENJOYMENT OR NON-INFRINGEMENT.
 * 
 * Technology Compatibility Kit Test Suite(s) Location:
 *    http://www.helixcommunity.org/content/tck
 * 
 * Contributor(s):
 * 
 * ***** END LICENSE BLOCK ***** */

#include <stdlib.h>
#include <math.h>
#include "hxassert.h"

#include "gain.h"
#include "math64.h"

struct GAIN_STATE
{
    int sampleRate ;
    int nChannels ;
    int headRoom ;
    INT32 instGain ; /* gain applied right now */
    INT32 tgtGain ;  /* in a smooth gain change, the gain we are aiming for */
    int shift ;
} ;

enum
{
    zeroDBGain = (1L<<30)
} ;

GAIN_STATE* gainInit(int sampleRate, int nChannels, int headRoom)
{
    GAIN_STATE* g = (GAIN_STATE*) calloc(1,sizeof(GAIN_STATE)) ;
    if (g)
    {
        g->sampleRate = sampleRate ;
        g->nChannels = nChannels ;
        g->headRoom = headRoom ;
        gainSetTimeConstant(0.1f, g) ;
    }

    return g ;
}

void gainFree(GAIN_STATE* g)
{
    if (g) free(g) ;
}

float gainSetSmooth(float dB, GAIN_STATE* g)
{
    unsigned int gain = (unsigned int)(0.5 + (double)(1UL<<(30-g->headRoom)) * pow(10.0, 0.05*dB)) ;

    if (dB > 20.0 * log10(1<<g->headRoom))
    {
        gain = zeroDBGain; dB = 20.0f * (float)log10(1<<g->headRoom) ; // avoid overflow
    }

    g->tgtGain = (INT32)gain ;

    return dB ;
}

float gainSetImmediate(float dB, GAIN_STATE* g)
{
    dB = gainSetSmooth(dB, g) ;

    g->instGain = g->tgtGain ; // make it instantaneous

    return dB ;
}

int gainSetTimeConstant(float millis, GAIN_STATE* g)
{
    // we define the time constant millis so that the signal has decayed to 1/2 (-6dB) after
    // millis milliseconds have elapsed.
    // Let T[sec] = millis/1000 = time constant in units of seconds
    //
    // => (1-2^-s)^(T[sec]*sr) = 1/2
    // => 1-2^-s = (1/2)^(1/(T[sec]*sr))
    // => 2^-s = 1 - (1/2)^(1/(T[sec]*sr))
    // => s = -log2(1 - (1/2)^(1 / (T[sec]*sr)))

    // first 0.5 is rounding constant
    g->shift = (int)(0.5 - 1.0/log(2.0)*log(1.0 - pow(0.5, 1000.0/(millis * g->sampleRate)))) ;
    if (g->shift < 1)
        g->shift = 1 ;
    if (g->shift > 31)
        g->shift = 31 ;

    return 1 ; // OK
}

static void gainFeedMono(INT32* signal, int nSamples, GAIN_STATE *g)
{
    INT32 tgtGain = g->tgtGain ;
    INT32 gain = g->instGain ;
    INT32 *bufferEnd = signal + nSamples ;

    if (gain == tgtGain)
    { // steady state
	while (signal != bufferEnd)
	{
	    *signal = MulShift30(*signal, gain) ; signal++ ;
	}
    }
    else
    { // while we are still ramping the gain
        int shift = g->shift ;
	while (signal != bufferEnd)
	{
	    int rc = (tgtGain > gain) - (tgtGain < gain) ; // -1,0,1 for x<y, x=y, x>y
	    *signal = MulShift30(*signal, gain) ; signal++ ;
	    gain += ((tgtGain-gain) >> shift) + rc ;
	}
        g->instGain = gain ;
    }
}

static void gainFeedStereo(INT32* signal, int nSamples, GAIN_STATE *g)
{
    INT32 tgtGain = g->tgtGain ;
    INT32 gain = g->instGain ;
    INT32 *bufferEnd = signal + nSamples ;

    HX_ASSERT(nSamples % 2 == 0);

    if (gain == tgtGain)
    { // steady state
	while (signal != bufferEnd)
	{
	    *signal = MulShift30(*signal, gain) ; signal++ ;
	    *signal = MulShift30(*signal, gain) ; signal++ ;
	}
    }
    else
    { // while we are still ramping the gain
        int shift = g->shift ;
	while (signal != bufferEnd)
	{
	    int rc = (tgtGain > gain) - (tgtGain < gain) ; // -1,0,1 for x<y, x=y, x>y
	    *signal = MulShift30(*signal, gain) ; signal++ ;
	    *signal = MulShift30(*signal, gain) ; signal++ ;
	    gain += ((tgtGain-gain) >> shift) + rc ;
	}
        g->instGain = gain ;
    }
}

static void gainFeedMulti(INT32* signal, int nSamples, GAIN_STATE *g)
{
    INT32 tgtGain = g->tgtGain ;
    INT32 gain = g->instGain ;
    INT32 *bufferEnd = signal + nSamples ;

    HX_ASSERT(nSamples % g->nChannels == 0);

    if (gain == tgtGain)
    { // steady state
	while (signal != bufferEnd)
	{
	    int i ;
	    for (i = 0 ; i < g->nChannels ; i++)
	    {
		*signal = MulShift30(*signal, gain) ; signal++ ;
	    }
	}
    }
    else
    { // while we are still ramping the gain
        int shift = g->shift ;
	while (signal != bufferEnd)
	{
	    int rc = (tgtGain > gain) - (tgtGain < gain) ; // -1,0,1 for x<y, x=y, x>y
	    int i ;
	    for (i = 0 ; i < g->nChannels ; i++)
	    {
		*signal = MulShift30(*signal, gain) ; signal++ ;
	    }
	    gain += ((tgtGain-gain) >> shift) + rc ;
	}
        g->instGain = gain ;
    }
}

void gainFeed(INT32* signal, int nSamples, GAIN_STATE* g)
{
    /* if the gain is 0dB, and we are not currently ramping, shortcut. */
    if (g->instGain == zeroDBGain && g->instGain == g->tgtGain)
    {
        return ;
    }
    switch (g->nChannels)
    {
    case 1:
        gainFeedMono(signal, nSamples, g) ;
        break ;
    case 2:
        gainFeedStereo(signal, nSamples, g) ;
        break ;
    default:
        gainFeedMulti(signal, nSamples, g) ;
        break ;
    }
}