1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
namespace md {
template<class Real>
void Bifiltration<Real>::init()
{
auto lower_left = max_point<Real>();
auto upper_right = min_point<Real>();
for(const auto& simplex : simplices_) {
lower_left = greatest_lower_bound<>(lower_left, simplex.position());
upper_right = least_upper_bound<>(upper_right, simplex.position());
maximal_dim_ = std::max(maximal_dim_, simplex.dim());
}
bounding_box_ = Box<Real>(lower_left, upper_right);
}
template<class Real>
Bifiltration<Real>::Bifiltration(const std::string& fname)
{
std::ifstream ifstr {fname.c_str()};
if (!ifstr.good()) {
std::string error_message = "Cannot open file " + fname;
std::cerr << error_message << std::endl;
throw std::runtime_error(error_message);
}
BifiltrationFormat input_format;
std::string s;
while(ignore_line(s)) {
std::getline(ifstr, s);
}
if (s == "bifiltration") {
input_format = BifiltrationFormat::rivet;
} else if (s == "bifiltration_phat_like") {
input_format = BifiltrationFormat::phat_like;
} else {
std::cerr << "Unknown format: '" << s << "' in file " << fname << std::endl;
throw std::runtime_error("unknown bifiltration format");
}
switch(input_format) {
case BifiltrationFormat::rivet :
rivet_format_reader(ifstr);
break;
case BifiltrationFormat::phat_like :
phat_like_format_reader(ifstr);
break;
}
ifstr.close();
init();
}
template<class Real>
void Bifiltration<Real>::rivet_format_reader(std::ifstream& ifstr)
{
std::string s;
// read axes names, ignore them
std::getline(ifstr, s);
std::getline(ifstr, s);
Index index = 0;
while(std::getline(ifstr, s)) {
if (!ignore_line(s)) {
simplices_.emplace_back(index++, s, BifiltrationFormat::rivet);
}
}
}
template<class Real>
void Bifiltration<Real>::phat_like_format_reader(std::ifstream& ifstr)
{
// read stream line by line; do not use >> operator
std::string s;
std::getline(ifstr, s);
// first line contains number of simplices
long n_simplices = std::stol(s);
// all other lines represent a simplex
Index index = 0;
while(index < n_simplices) {
std::getline(ifstr, s);
if (!ignore_line(s)) {
simplices_.emplace_back(index++, s, BifiltrationFormat::phat_like);
}
}
}
template<class Real>
void Bifiltration<Real>::scale(Real lambda)
{
for(auto& s : simplices_) {
s.scale(lambda);
}
init();
}
template<class Real>
void Bifiltration<Real>::sanity_check() const
{
#ifdef DEBUG
// check that boundary has correct number of simplices,
// each bounding simplex has correct dim
// and appears in the filtration before the simplex it bounds
for(const auto& s : simplices_) {
assert(s.dim() >= 0);
assert(s.dim() == 0 or s.dim() + 1 == (int) s.boundary().size());
for(auto bdry_idx : s.boundary()) {
Simplex bdry_simplex = simplices()[bdry_idx];
assert(bdry_simplex.dim() == s.dim() - 1);
assert(bdry_simplex.position().is_less(s.position(), false));
}
}
#endif
}
template<class Real>
Diagram<Real> Bifiltration<Real>::weighted_slice_diagram(const DualPoint<Real>& line, int dim) const
{
DiagramKeeper<Real> dgm;
// make a copy for now; I want slice_diagram to be const
std::vector<Simplex<Real>> simplices(simplices_);
// std::vector<Simplex> simplices;
// simplices.reserve(simplices_.size() / 2);
// for(const auto& s : simplices_) {
// if (s.dim() <= dim + 1 and s.dim() >= dim)
// simplices.emplace_back(s);
// }
for(auto& simplex : simplices) {
Real value = line.weighted_push(simplex.position());
simplex.set_value(value);
}
std::sort(simplices.begin(), simplices.end(),
[](const Simplex<Real>& a, const Simplex<Real>& b) { return a.value() < b.value(); });
std::map<Index, Index> index_map;
for(Index i = 0; i < (int) simplices.size(); i++) {
index_map[simplices[i].id()] = i;
}
phat::boundary_matrix<> phat_matrix;
phat_matrix.set_num_cols(simplices.size());
std::vector<Index> bd_in_slice_filtration;
for(Index i = 0; i < (int) simplices.size(); i++) {
phat_matrix.set_dim(i, simplices[i].dim());
bd_in_slice_filtration.clear();
//std::cout << "new col" << i << std::endl;
for(int j = 0; j < (int) simplices[i].boundary().size(); j++) {
// F[i] contains the indices of its facet wrt to the
// original filtration. We have to express it, however,
// wrt to the filtration along the slice. That is why
// we need the index_map
//std::cout << "Found " << F[i].bd[j] << ", returning " << index_map[F[i].bd[j]] << std::endl;
bd_in_slice_filtration.push_back(index_map[simplices[i].boundary()[j]]);
}
std::sort(bd_in_slice_filtration.begin(), bd_in_slice_filtration.end());
phat_matrix.set_col(i, bd_in_slice_filtration);
}
phat::persistence_pairs phat_persistence_pairs;
phat::compute_persistence_pairs<phat::twist_reduction>(phat_persistence_pairs, phat_matrix);
dgm.clear();
constexpr Real real_inf = std::numeric_limits<Real>::infinity();
for(long i = 0; i < (long) phat_persistence_pairs.get_num_pairs(); i++) {
std::pair<phat::index, phat::index> new_pair = phat_persistence_pairs.get_pair(i);
bool is_finite_pair = new_pair.second != phat::k_infinity_index;
Real birth = simplices.at(new_pair.first).value();
Real death = is_finite_pair ? simplices.at(new_pair.second).value() : real_inf;
int dim = simplices[new_pair.first].dim();
assert(dim + 1 == simplices[new_pair.second].dim());
if (birth != death) {
dgm.add_point(dim, birth, death);
}
}
return dgm.get_diagram(dim);
}
template<class Real>
Box<Real> Bifiltration<Real>::bounding_box() const
{
return bounding_box_;
}
template<class Real>
Real Bifiltration<Real>::minimal_coordinate() const
{
return std::min(bounding_box_.lower_left().x, bounding_box_.lower_left().y);
}
template<class Real>
void Bifiltration<Real>::translate(Real a)
{
bounding_box_.translate(a);
for(auto& simplex : simplices_) {
simplex.translate(a);
}
}
template<class Real>
Real Bifiltration<Real>::max_x() const
{
if (simplices_.empty())
return 1;
auto me = std::max_element(simplices_.cbegin(), simplices_.cend(),
[](const auto& s_a, const auto& s_b) { return s_a.position().x < s_b.position().x; });
assert(me != simplices_.cend());
return me->position().x;
}
template<class Real>
Real Bifiltration<Real>::max_y() const
{
if (simplices_.empty())
return 1;
auto me = std::max_element(simplices_.cbegin(), simplices_.cend(),
[](const auto& s_a, const auto& s_b) { return s_a.position().y < s_b.position().y; });
assert(me != simplices_.cend());
return me->position().y;
}
template<class Real>
Real Bifiltration<Real>::min_x() const
{
if (simplices_.empty())
return 0;
auto me = std::min_element(simplices_.cbegin(), simplices_.cend(),
[](const auto& s_a, const auto& s_b) { return s_a.position().x < s_b.position().x; });
assert(me != simplices_.cend());
return me->position().x;
}
template<class Real>
Real Bifiltration<Real>::min_y() const
{
if (simplices_.empty())
return 0;
auto me = std::min_element(simplices_.cbegin(), simplices_.cend(),
[](const auto& s_a, const auto& s_b) { return s_a.position().y < s_b.position().y; });
assert(me != simplices_.cend());
return me->position().y;
}
template<class Real>
void Bifiltration<Real>::add_simplex(Index _id, Point<Real> birth, int _dim, const Column& _bdry)
{
simplices_.emplace_back(_id, birth, _dim, _bdry);
}
template<class Real>
void Bifiltration<Real>::save(const std::string& filename, md::BifiltrationFormat format)
{
switch(format) {
case BifiltrationFormat::rivet:
throw std::runtime_error("Not implemented");
break;
case BifiltrationFormat::phat_like: {
std::ofstream f(filename);
if (not f.good()) {
std::cerr << "Bifiltration::save: cannot open file " << filename << std::endl;
throw std::runtime_error("Cannot open file for writing ");
}
f << simplices_.size() << "\n";
for(const auto& s : simplices_) {
f << s.dim() << " " << s.position().x << " " << s.position().y << " ";
for(int b : s.boundary()) {
f << b << " ";
}
f << std::endl;
}
}
break;
}
}
template<class Real>
void Bifiltration<Real>::postprocess_rivet_format()
{
std::map<Column, Index> facets_to_ids;
// fill the map
for(Index i = 0; i < (Index) simplices_.size(); ++i) {
assert(simplices_[i].id() == i);
facets_to_ids[simplices_[i].vertices_] = i;
}
// for(const auto& s : simplices_) {
// facets_to_ids[s] = s.id();
// }
// main loop
for(auto& s : simplices_) {
assert(not s.vertices_.empty());
assert(s.facet_indices_.empty());
Column facet_indices;
for(Index i = 0; i <= s.dim(); ++i) {
Column facet;
for(Index j : s.vertices_) {
if (j != i)
facet.push_back(j);
}
auto facet_index = facets_to_ids.at(facet);
facet_indices.push_back(facet_index);
}
s.facet_indices_ = facet_indices;
} // loop over simplices
}
template<class Real>
std::ostream& operator<<(std::ostream& os, const Bifiltration<Real>& bif)
{
os << "Bifiltration [" << std::endl;
for(const auto& s : bif.simplices()) {
os << s << std::endl;
}
os << "]" << std::endl;
return os;
}
template<class Real>
BifiltrationProxy<Real>::BifiltrationProxy(const Bifiltration<Real>& bif, int dim)
:
dim_(dim),
bif_(bif)
{
cache_positions();
}
template<class Real>
void BifiltrationProxy<Real>::cache_positions() const
{
cached_positions_.clear();
for(const auto& simplex : bif_.simplices()) {
if (simplex.dim() == dim_ or simplex.dim() == dim_ + 1)
cached_positions_.push_back(simplex.position());
}
}
template<class Real>
PointVec<Real>
BifiltrationProxy<Real>::positions() const
{
if (cached_positions_.empty()) {
cache_positions();
}
return cached_positions_;
}
// translate all points by vector (a,a)
template<class Real>
void BifiltrationProxy<Real>::translate(Real a)
{
bif_.translate(a);
}
// return minimal value of x- and y-coordinates
// among all simplices
template<class Real>
Real BifiltrationProxy<Real>::minimal_coordinate() const
{
return bif_.minimal_coordinate();
}
// return box that contains positions of all simplices
template<class Real>
Box<Real> BifiltrationProxy<Real>::bounding_box() const
{
return bif_.bounding_box();
}
template<class Real>
Real BifiltrationProxy<Real>::max_x() const
{
return bif_.max_x();
}
template<class Real>
Real BifiltrationProxy<Real>::max_y() const
{
return bif_.max_y();
}
template<class Real>
Real BifiltrationProxy<Real>::min_x() const
{
return bif_.min_x();
}
template<class Real>
Real BifiltrationProxy<Real>::min_y() const
{
return bif_.min_y();
}
template<class Real>
Diagram<Real> BifiltrationProxy<Real>::weighted_slice_diagram(const DualPoint<Real>& slice) const
{
return bif_.weighted_slice_diagram(slice, dim_);
}
}
|