1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
|
/* STACK.C (c) Copyright Roger Bowler, 1999-2003 */
/* ESA/390 Linkage Stack Operations */
/* Interpretive Execution - (c) Copyright Jan Jaeger, 1999-2003 */
/* z/Architecture support - (c) Copyright Jan Jaeger, 1999-2003 */
/*-------------------------------------------------------------------*/
/* This module implements the linkage stack functions of ESA/390 */
/* described in SA22-7201-04 ESA/390 Principles of Operation. */
/* The numbers in square brackets refer to sections in the manual. */
/*-------------------------------------------------------------------*/
/*-------------------------------------------------------------------*/
/* Fix CR15 corruption in form_stack_entry Jan Jaeger */
/* Fix nullification in form_stack_entry Jan Jaeger */
/* Fix nullification in unstack_registers Jan Jaeger */
/* Modifications for Interpretive Execution (SIE) Jan Jaeger */
/* ESAME low-address protection v208d Roger Bowler */
/* ESAME linkage stack operations v208e Roger Bowler */
/* TRAP support added Jan Jaeger */
/* Correction to stack types in ESAME mode Jan Jaeger */
/*-------------------------------------------------------------------*/
// #define STACK_DEBUG
#include "hercules.h"
#include "opcode.h"
#include "inline.h"
/*-------------------------------------------------------------------*/
/* Linkage stack macro definitions */
/*-------------------------------------------------------------------*/
#undef CR15_LSEA
#undef LSEA_WRAP
#undef LSSE_SIZE
#undef LSSE_REGSIZE
#undef FETCH_BSEA
#undef STORE_BSEA
#undef LSHE_BSEA
#undef LSHE_RESV
#undef LSHE_BVALID
#undef FETCH_FSHA
#undef LSTE_FSHA
#undef LSTE_RESV
#undef LSTE_FVALID
#if defined(FEATURE_ESAME)
#define CR15_LSEA CR15_LSEA_900 /* Bit mask for ESAME linkage
stack entry addr in CR15 */
#define LSEA_WRAP(_lsea) /* No address wrap for ESAME */
#define LSSE_SIZE 296 /* Size of an ESAME linkage
stack state entry */
#define LSSE_REGSIZE 8 /* Size of a general register
in ESAME state entry */
/* ESAME linkage stack header entry */
/* LSHE words 1 and 2 contain the backward stack entry address */
#define FETCH_BSEA(_bsea,_lshe) FETCH_DW(_bsea,_lshe)
#define STORE_BSEA(_lshe,_bsea) STORE_DW(_lshe,_bsea)
#define LSHE_BSEA 0xFFFFFFFFFFFFFFF8ULL /* Backward address */
#define LSHE_RESV 0x06 /* Reserved bits - must be 0 */
#define LSHE_BVALID 0x01 /* Backward address is valid */
/* LSHE words 2 and 3 contain a linkage stack entry descriptor */
/* ESAME linkage stack trailer entry */
/* LSTE words 1 and 2 contain the forward section header address */
#define FETCH_FSHA(_fsha,_lste) FETCH_DW(_fsha,_lste)
#define LSTE_FSHA 0xFFFFFFFFFFFFFFF8ULL /* Forward address */
#define LSTE_RESV 0x06 /* Reserved bits - must be 0 */
#define LSTE_FVALID 0x01 /* Forward address is valid */
/* LSTE words 2 and 3 contain a linkage stack entry descriptor */
#else /*!defined(FEATURE_ESAME)*/
#define CR15_LSEA CR15_LSEA_390 /* Bit mask for ESA/390 linkage
stack entry addr in CR15 */
#define LSEA_WRAP(_lsea) \
_lsea &= 0x7FFFFFFF /* Wrap linkage stack address*/
#define LSSE_SIZE 168 /* Size of an ESA/390 linkage
stack state entry */
#define LSSE_REGSIZE 4 /* Size of a general register
in ESA/390 state entry */
/* ESA/390 linkage stack header entry */
/* LSHE word 0 is reserved for control program use */
/* LSHE word 1 contains the backward stack entry address */
#define FETCH_BSEA(_bsea,_lshe) FETCH_FW(_bsea,(_lshe)+4)
#define STORE_BSEA(_lshe,_bsea) STORE_FW((_lshe)+4,_bsea)
#define LSHE_BVALID 0x80000000 /* Backward address is valid */
#define LSHE_BSEA 0x7FFFFFF8 /* Backward stack entry addr */
#define LSHE_RESV 0x00000007 /* Reserved bits - must be 0 */
/* LSHE words 2 and 3 contain a linkage stack entry descriptor */
/* ESA/390 linkage stack trailer entry */
/* LSTE word 0 is reserved for control program use */
/* LSTE word 1 contains the forward section header address */
#define FETCH_FSHA(_fsha,_lste) FETCH_FW(_fsha,(_lste)+4)
#define LSTE_FVALID 0x80000000 /* Forward address is valid */
#define LSTE_FSHA 0x7FFFFFF8 /* Forward section hdr addr */
#define LSTE_RESV 0x00000007 /* Reserved bits - must be 0 */
/* LSTE words 2 and 3 contain a linkage stack entry descriptor */
#endif /*!defined(FEATURE_ESAME)*/
#if defined(FEATURE_LINKAGE_STACK)
void ARCH_DEP(trap_x) (int trap_is_trap4, int execflag, REGS *regs, U32 trap_operand)
{
RADR ducto;
U32 duct11;
U32 tcba;
RADR atcba;
#if defined(FEATURE_ESAME)
U32 tcba0;
#endif /*defined(FEATURE_ESAME)*/
U32 tsao;
RADR tsaa1,
tsaa2;
VADR lastbyte;
U32 trap_ia;
U32 trap_flags;
QWORD trap_psw;
int i;
if ( REAL_MODE(®s->psw)
|| !(PRIMARY_SPACE_MODE(®s->psw)
|| ACCESS_REGISTER_MODE(®s->psw)) )
ARCH_DEP(program_interrupt) (regs, PGM_SPECIAL_OPERATION_EXCEPTION);
/* Obtain the DUCT origin from control register 2 */
ducto = regs->CR(2) & CR2_DUCTO;
/* Program check if DUCT origin address is invalid */
if (ducto > regs->mainlim)
ARCH_DEP(program_interrupt) (regs, PGM_ADDRESSING_EXCEPTION);
/* Fetch DUCT bytes 44-47 */
duct11 = ARCH_DEP(fetch_fullword_absolute) (ducto + 44, regs);
if(!(duct11 & DUCT11_TE))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIAL_OPERATION_EXCEPTION);
/* Isolate the Trap Control Block Address */
tcba = duct11 & DUCT11_TCBA;
#if defined(FEATURE_ESAME)
/* Fetch word 0 of the TCB */
atcba = ARCH_DEP(abs_trap_addr) (tcba, regs, ACCTYPE_READ);
FETCH_FW(tcba0, regs->mainstor + atcba);
#endif /*defined(FEATURE_ESAME)*/
/* Advance to offset +12 */
tcba += 12;
atcba = ARCH_DEP(abs_trap_addr) (tcba, regs, ACCTYPE_READ);
/* Fetch word 3 of the TCB */
FETCH_FW(tsao, regs->mainstor + atcba);
tsao &= 0x7FFFFFF8;
/* Advance to offset +20 */
tcba += 8; atcba += 8;
if((atcba & PAGEFRAME_BYTEMASK) < 8)
atcba = ARCH_DEP(abs_trap_addr) (tcba, regs, ACCTYPE_READ);
/* Fetch word 5 of the TCB */
FETCH_FW(trap_ia, regs->mainstor + atcba);
trap_ia &= 0x7FFFFFFF;
/* Calculate last byte stored */
lastbyte = tsao + 95
#if defined(FEATURE_ESAME)
+ ((tcba0 & TCB0_R) ? 64 : 0)
#endif /*defined(FEATURE_ESAME)*/
;
/* Use abs_trap_addr as it conforms to trap save area access */
tsaa1 = tsaa2 = ARCH_DEP(abs_trap_addr) (tsao, regs, ACCTYPE_WRITE);
if((tsaa1 & PAGEFRAME_PAGEMASK) != (lastbyte & PAGEFRAME_PAGEMASK))
{
tsao = lastbyte & PAGEFRAME_PAGEMASK;
tsaa2 = ARCH_DEP(abs_trap_addr) (tsao, regs, ACCTYPE_WRITE);
}
STORAGE_KEY(tsaa1, regs) |= STORKEY_CHANGE;
if (tsaa1 != tsaa2)
STORAGE_KEY(tsaa2, regs) |= STORKEY_CHANGE;
#if defined(FEATURE_ESAME)
/* Special operation exception if P == 0 and EA == 1 */
if(!(tcba0 & TCB0_P) && regs->psw.amode64)
ARCH_DEP(program_interrupt) (regs, PGM_SPECIAL_OPERATION_EXCEPTION);
#endif /*defined(FEATURE_ESAME)*/
#ifdef FEATURE_TRACING
if (regs->CR(12) & CR12_BRTRACE)
regs->CR(12) = ARCH_DEP(trace_br) (1, trap_ia, regs);
#endif /*FEATURE_TRACING*/
#if defined(FEATURE_PER)
if( EN_IC_PER_SB(regs)
#if defined(FEATURE_PER2)
&& ( !(regs->CR(9) & CR9_BAC)
|| PER_RANGE_CHECK(trap_ia,regs->CR(10),regs->CR(11)) )
#endif /*defined(FEATURE_PER2)*/
)
ON_IC_PER_SB(regs);
#endif /*defined(FEATURE_PER)*/
trap_flags = regs->psw.ilc << 16;
if(execflag)
trap_flags |= TRAP0_EXECUTE;
if(trap_is_trap4)
trap_flags |= TRAP0_TRAP4;
/* Trap flags at offset +0 */
STORE_FW(regs->mainstor + tsaa1, trap_flags);
/* Reserved zero's stored at offset +4 */
STORE_FW(regs->mainstor + tsaa1 + 4, 0);
tsaa1 += 8;
if((tsaa1 & PAGEFRAME_BYTEMASK) == 0)
tsaa1 = tsaa2;
/* Bits 33-63 of Second-Op address of TRAP4 at offset +8 */
STORE_FW(regs->mainstor + tsaa1, trap_operand);
/* Access register 15 at offset +12 */
STORE_FW(regs->mainstor + tsaa1 + 4, regs->AR(15));
tsaa1 += 8;
if((tsaa1 & PAGEFRAME_BYTEMASK) == 0)
tsaa1 = tsaa2;
#if defined(FEATURE_ESAME)
/* If the P bit is one then store the PSW in esame format */
if(tcba0 & TCB0_P)
ARCH_DEP(store_psw) (regs, trap_psw);
else
#endif /*defined(FEATURE_ESAME)*/
{
s390_store_psw(regs, trap_psw);
#if defined(FEATURE_ESAME)
/* Set the notesame mode bit for a esa/390 psw */
trap_psw[1] |= 0x08;
#endif /*defined(FEATURE_ESAME)*/
}
/* bits 0-63 of PSW at offset +16 */
memcpy(regs->mainstor + tsaa1, trap_psw, 8);
tsaa1 += 8;
if((tsaa1 & PAGEFRAME_BYTEMASK) == 0)
tsaa1 = tsaa2;
#if defined(FEATURE_ESAME)
/* If the P bit is one then store the PSW in esame format */
/* bits 64-127 of PSW at offset +24 */
if(tcba0 & TCB0_P)
memcpy(regs->mainstor + tsaa1, trap_psw + 8, 8);
else
#endif /*defined(FEATURE_ESAME)*/
memset(regs->mainstor + tsaa1, 0, 8);
tsaa1 += 8;
if((tsaa1 & PAGEFRAME_BYTEMASK) == 0)
tsaa1 = tsaa2;
#if defined(FEATURE_ESAME)
/* General registers at offset +32 */
if(tcba0 & TCB0_R)
for(i = 0; i < 16; i++)
{
STORE_DW(regs->mainstor + tsaa1, regs->GR_G(i));
tsaa1 += 8;
if((tsaa1 & PAGEFRAME_BYTEMASK) == 0)
tsaa1 = tsaa2;
}
else
#endif /*defined(FEATURE_ESAME)*/
for(i = 0; i < 16; i++)
{
STORE_FW(regs->mainstor + tsaa1, regs->GR_L(i));
tsaa1 += 4;
if((tsaa1 & PAGEFRAME_BYTEMASK) == 0)
tsaa1 = tsaa2;
}
/* Load the Trap Control Block Address in gr15 */
regs->GR_L(15) = duct11 & DUCT11_TCBA;
/* Set the Trap program address as a 31 bit instruction address */
#if defined(FEATURE_ESAME)
regs->psw.amode64 = 0;
#endif /*defined(FEATURE_ESAME)*/
regs->psw.amode = 1;
regs->psw.AMASK = AMASK31;
regs->psw.IA = trap_ia;
/* set PSW to primary space */
regs->psw.space = 0;
regs->psw.armode = 0;
INVALIDATE_AIA(regs);
INVALIDATE_AEA_ALL(regs);
}
/*-------------------------------------------------------------------*/
/* Convert trap virtual address to absolute address */
/* */
/* Input: */
/* vaddr Virtual address of trap area */
/* regs Pointer to the CPU register context */
/* acctype Type of access requested: READ or WRITE */
/* Return value: */
/* Absolute address of trap area */
/* */
/* The virtual address is translated using the segment table */
/* for the home address space. Key-controlled protection does */
/* apply to trap addresses, as well as page protection */
/* and low-address protection. */
/* */
/* A program check may be generated if the stack address causes */
/* an addressing, protection, or translation exception, and in */
/* this case the function does not return. */
/*-------------------------------------------------------------------*/
RADR ARCH_DEP(abs_trap_addr) (VADR vaddr, REGS *regs, int acctype)
{
int rc; /* Return code */
RADR raddr; /* Real address */
RADR aaddr; /* Absolute address */
int private = 0; /* 1=Private address space */
int protect = 0; /* 1=page 2=ALE protection */
int stid; /* Segment table indication */
U16 xcode; /* Exception code */
/* Convert to real address using home segment table */
rc = ARCH_DEP(translate_addr) (vaddr, 0, regs, ACCTYPE_STACK,
&raddr, &xcode, &private, &protect, &stid);
if (rc != 0)
ARCH_DEP(program_interrupt) (regs, xcode);
/* Low-address protection prohibits stores into PSA locations */
if (acctype == ACCTYPE_WRITE
&& ARCH_DEP(is_low_address_protected) (vaddr, private, regs))
goto trap_prot;
/* Page protection prohibits all stores into the page */
if (acctype == ACCTYPE_WRITE && protect)
goto trap_prot;
/* Convert real address to absolute address */
aaddr = APPLY_PREFIXING (raddr, regs->PX);
/* Program check if absolute address is outside main storage */
if (aaddr > regs->mainlim)
ARCH_DEP(program_interrupt) (regs, PGM_ADDRESSING_EXCEPTION);
#if defined(_FEATURE_SIE)
if(regs->sie_state && !regs->sie_pref)
{
U32 sie_stid;
U16 sie_xcode;
int sie_private;
if (SIE_TRANSLATE_ADDR (regs->sie_mso + aaddr,
USE_PRIMARY_SPACE,
regs->hostregs, ACCTYPE_SIE, &aaddr, &sie_xcode,
&sie_private, &protect, &sie_stid))
(regs->sie_hostpi) (regs->hostregs, sie_xcode);
/* Convert host real address to host absolute address */
aaddr = APPLY_PREFIXING (aaddr, regs->hostregs->PX);
}
/* Check for HOST Page protection */
if (acctype == ACCTYPE_WRITE && protect)
goto trap_prot;
#endif /*defined(_FEATURE_SIE)*/
if (!((regs->psw.pkey == 0)
|| ((regs->CR(0) & CR0_STORE_OVRD)
&& ((STORAGE_KEY(aaddr, regs) & STORKEY_KEY) == 0x90))))
{
protect = 0; /* clear ALE, PTE protect flag */
/* Check Key protection for store */
if (acctype == ACCTYPE_WRITE
&& ((STORAGE_KEY(aaddr, regs) & STORKEY_KEY) != regs->psw.pkey))
goto trap_prot;
/* Check Key protection for fetch */
if (acctype == ACCTYPE_READ
&& (STORAGE_KEY(aaddr, regs) & STORKEY_FETCH)
&& ((STORAGE_KEY(aaddr, regs) & STORKEY_KEY) != regs->psw.pkey))
goto trap_prot;
}
/* Set the reference bits in the storage key */
STORAGE_KEY(aaddr, regs) |= STORKEY_REF;
#if defined(FEATURE_PER)
if (acctype == ACCTYPE_WRITE)
{
if( EN_IC_PER_SA(regs)
#if defined(FEATURE_PER2)
&& ( REAL_MODE(®s->psw) ||
ARCH_DEP(check_sa_per2) (vaddr, 0, ACCTYPE_STACK, regs) )
#endif /*defined(FEATURE_PER2)*/
&& PER_RANGE_CHECK(vaddr,regs->CR(10),regs->CR(11)) )
ON_IC_PER_SA(regs);
}
#endif /*defined(FEATURE_PER)*/
/* Return absolute address */
return aaddr;
trap_prot:
#ifdef FEATURE_SUPPRESSION_ON_PROTECTION
regs->TEA = (vaddr & STORAGE_KEY_PAGEMASK)
| protect << 2 | TEA_ST_HOME;
regs->excarid = 0;
#endif /*FEATURE_SUPPRESSION_ON_PROTECTION*/
ARCH_DEP(program_interrupt) (regs, PGM_PROTECTION_EXCEPTION);
return -1; /* avoid compiler warnings */
} /* end function ARCH_DEP(abs_trap_addr) */
/*-------------------------------------------------------------------*/
/* Convert linkage stack virtual address to absolute address */
/* */
/* Input: */
/* vaddr Virtual address of stack entry */
/* regs Pointer to the CPU register context */
/* acctype Type of access requested: READ or WRITE */
/* Return value: */
/* Absolute address of stack entry. */
/* */
/* The virtual address is translated using the segment table */
/* for the home address space. Key-controlled protection does */
/* not apply to linkage stack operations, but page protection */
/* and low-address protection do apply. */
/* */
/* A program check may be generated if the stack address causes */
/* an addressing, protection, or translation exception, and in */
/* this case the function does not return. */
/*-------------------------------------------------------------------*/
RADR ARCH_DEP(abs_stack_addr) (VADR vaddr, REGS *regs, int acctype)
{
int rc; /* Return code */
RADR raddr; /* Real address */
RADR aaddr; /* Absolute address */
int private = 0; /* 1=Private address space */
int protect = 0; /* 1=ALE or page protection */
int stid; /* Segment table indication */
U16 xcode; /* Exception code */
/* Convert to real address using home segment table */
rc = ARCH_DEP(translate_addr) (vaddr, 0, regs, ACCTYPE_STACK,
&raddr, &xcode, &private, &protect, &stid);
if (rc != 0)
ARCH_DEP(program_interrupt) (regs, xcode);
/* Low-address protection prohibits stores into PSA locations */
if (acctype == ACCTYPE_WRITE
&& ARCH_DEP(is_low_address_protected) (vaddr, private, regs))
{
#ifdef FEATURE_SUPPRESSION_ON_PROTECTION
regs->TEA = (vaddr & STORAGE_KEY_PAGEMASK) | TEA_ST_HOME;
regs->excarid = 0;
#endif /*FEATURE_SUPPRESSION_ON_PROTECTION*/
ARCH_DEP(program_interrupt) (regs, PGM_PROTECTION_EXCEPTION);
}
/* Page protection prohibits all stores into the page */
if (acctype == ACCTYPE_WRITE && protect)
{
#ifdef FEATURE_SUPPRESSION_ON_PROTECTION
regs->TEA = (vaddr & STORAGE_KEY_PAGEMASK)
| TEA_PROT_AP | TEA_ST_HOME;
regs->excarid = 0;
#endif /*FEATURE_SUPPRESSION_ON_PROTECTION*/
ARCH_DEP(program_interrupt) (regs, PGM_PROTECTION_EXCEPTION);
}
/* Convert real address to absolute address */
aaddr = APPLY_PREFIXING (raddr, regs->PX);
/* Program check if absolute address is outside main storage */
if (aaddr > regs->mainlim)
ARCH_DEP(program_interrupt) (regs, PGM_ADDRESSING_EXCEPTION);
#if defined(_FEATURE_SIE)
if(regs->sie_state && !regs->sie_pref)
{
U32 sie_stid;
U16 sie_xcode;
int sie_private;
if (SIE_TRANSLATE_ADDR (regs->sie_mso + aaddr,
USE_PRIMARY_SPACE,
regs->hostregs, ACCTYPE_SIE, &aaddr, &sie_xcode,
&sie_private, &protect, &sie_stid))
(regs->sie_hostpi) (regs->hostregs, sie_xcode);
/* Convert host real address to host absolute address */
aaddr = APPLY_PREFIXING (aaddr, regs->hostregs->PX);
}
/* Check for HOST Page protection */
if (acctype == ACCTYPE_WRITE && protect)
{
#ifdef FEATURE_SUPPRESSION_ON_PROTECTION
regs->TEA = (vaddr & STORAGE_KEY_PAGEMASK)
| TEA_PROT_AP | TEA_ST_HOME;
regs->excarid = 0;
#endif /*FEATURE_SUPPRESSION_ON_PROTECTION*/
ARCH_DEP(program_interrupt) (regs, PGM_PROTECTION_EXCEPTION);
}
#endif /*defined(_FEATURE_SIE)*/
/* Set the reference and change bits in the storage key */
STORAGE_KEY(aaddr, regs) |= STORKEY_REF;
if (acctype == ACCTYPE_WRITE)
{
STORAGE_KEY(aaddr, regs) |= STORKEY_CHANGE;
#if defined(FEATURE_PER)
if( EN_IC_PER_SA(regs)
#if defined(FEATURE_PER2)
&& ( REAL_MODE(®s->psw) ||
ARCH_DEP(check_sa_per2) (vaddr, 0, ACCTYPE_STACK, regs) )
#endif /*defined(FEATURE_PER2)*/
&& PER_RANGE_CHECK(vaddr,regs->CR(10),regs->CR(11)) )
ON_IC_PER_SA(regs);
#endif /*defined(FEATURE_PER)*/
}
/* Return absolute address */
return aaddr;
} /* end function ARCH_DEP(abs_stack_addr) */
/*-------------------------------------------------------------------*/
/* Form a new entry on the linkage stack */
/* */
/* Input: */
/* etype Linkage stack entry type (LSED_UET_PC/BAKR) */
/* retna Return amode and instruction address to be stored */
/* in the saved PSW in the new stack entry */
/* calla Called amode and instruction address (for BAKR) */
/* csi 32-bit called-space identification (for PC) */
/* pcnum Called PC number (for PC) */
/* regs Pointer to the CPU register context */
/* */
/* This function performs the stacking process for the */
/* Branch and Stack (BAKR) and Program Call (PC) instructions. */
/* */
/* For ESAME, bit 63 of retna/calla indicate a 64-bit address, */
/* otherwise bit 32 indicates a 31-bit address. */
/* For ESA/390, bit 0 of retna/calla indicate a 31-bit address. */
/* */
/* For ESAME, bit 0 of pcnum indicates resulting 64-bit mode. */
/* */
/* In the event of any stack error, this function generates */
/* a program check and does not return. */
/*-------------------------------------------------------------------*/
void ARCH_DEP(form_stack_entry) (BYTE etype, VADR retna, VADR calla,
U32 csi, U32 pcnum, REGS *regs)
{
QWORD currpsw; /* Current PSW */
VADR lsea; /* Linkage stack entry addr */
VADR lseaold; /* Linkage stack old addr */
RADR abs, abs2 = 0; /* Absolute addr new entry */
RADR absold; /* Absolute addr old entry */
LSED lsed; /* Linkage stack entry desc. */
LSED lsed2; /* New entry descriptor */
U16 rfs; /* Remaining free space */
VADR fsha; /* Forward section hdr addr */
VADR bsea = 0; /* Backward stack entry addr */
RADR absea = 0; /* Absolute address of bsea */
int i; /* Array subscript */
/* [5.12.3.1] Locate space for a new linkage stack entry */
/* Obtain the virtual address of the current entry from CR15 */
lsea = regs->CR(15) & CR15_LSEA;
/* Fetch the entry descriptor of the current entry */
absold = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
memcpy (&lsed, regs->mainstor+absold, sizeof(LSED));
lseaold = lsea;
#ifdef STACK_DEBUG
logmsg (_("stack: Current stack entry at " F_VADR "\n"), lsea);
logmsg (_("stack: et=%2.2X si=%2.2X rfs=%2.2X%2.2X nes=%2.2X%2.2X\n"),
lsed.uet, lsed.si, lsed.rfs[0],
lsed.rfs[1], lsed.nes[0], lsed.nes[1]);
#endif /*STACK_DEBUG*/
/* Check whether the current linkage stack section has enough
remaining free space to contain the new stack entry */
FETCH_HW(rfs,lsed.rfs);
if (rfs < LSSE_SIZE)
{
/* Program check if remaining free space not a multiple of 8 */
if ((rfs & 0x07) != 0)
ARCH_DEP(program_interrupt) (regs, PGM_STACK_SPECIFICATION_EXCEPTION);
/* Not enough space, so fetch the forward section header addr
from the trailer entry of current linkage stack section */
lsea += sizeof(LSED) + rfs;
LSEA_WRAP(lsea);
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
FETCH_FSHA(fsha, regs->mainstor + abs);
#ifdef STACK_DEBUG
logmsg (_("stack: Forward section header addr " F_VADR "\n"), fsha);
#endif /*STACK_DEBUG*/
/* Stack full exception if forward address is not valid */
if ((fsha & LSTE_FVALID) == 0)
ARCH_DEP(program_interrupt) (regs, PGM_STACK_FULL_EXCEPTION);
/* Extract the forward section header address, which points to
the entry descriptor (words 2-3) of next section's header */
fsha &= LSTE_FSHA;
/* Fetch the entry descriptor of the next section's header */
absold = ARCH_DEP(abs_stack_addr) (fsha, regs, ACCTYPE_READ);
memcpy (&lsed, regs->mainstor+absold, sizeof(LSED));
lseaold = fsha;
#ifdef STACK_DEBUG
logmsg (_("stack: et=%2.2X si=%2.2X rfs=%2.2X%2.2X "
"nes=%2.2X%2.2X\n"),
lsed.uet, lsed.si, lsed.rfs[0],
lsed.rfs[1], lsed.nes[0], lsed.nes[1]);
#endif /*STACK_DEBUG*/
/* Program check if the next linkage stack section does not
have enough free space to contain the new stack entry */
FETCH_HW(rfs,lsed.rfs);
if (rfs < LSSE_SIZE)
ARCH_DEP(program_interrupt) (regs, PGM_STACK_SPECIFICATION_EXCEPTION);
/* Calculate the virtual address of the new section's header
entry, which is 8 bytes before the entry descriptor */
lsea = fsha - 8;
LSEA_WRAP(lsea);
/* Form the backward stack entry address */
bsea = LSHE_BVALID | (regs->CR(15) & CR15_LSEA);
absea = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_WRITE);
/* Use the virtual address of the entry descriptor of the
new section's header entry as the current entry address */
lsea = fsha;
} /* end if(rfs<LSSE_SIZE) */
/* [5.12.3.2] Form the new stack entry */
/* Calculate the virtual address of the new stack entry */
lsea += sizeof(LSED);
LSEA_WRAP(lsea);
/* Obtain absolute address of the new stack entry */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_WRITE);
/* If new stack entry will cross a page boundary, obtain the
absolute address of the second page of the stack entry */
if(((lsea + (LSSE_SIZE - 1)) & PAGEFRAME_PAGEMASK)
!= (lsea & PAGEFRAME_PAGEMASK))
abs2 = ARCH_DEP(abs_stack_addr)
((lsea + (LSSE_SIZE - 1)) & PAGEFRAME_PAGEMASK,
regs, ACCTYPE_WRITE);
#ifdef STACK_DEBUG
logmsg (_("stack: New stack entry at " F_VADR "\n"), lsea);
#endif /*STACK_DEBUG*/
/* If a new section then place updated backward stack
entry address in the new section's header entry */
if(bsea)
STORE_BSEA(regs->mainstor + absea, bsea);
/* Store general registers 0-15 in bytes 0-63 (ESA/390)
or bytes 0-127 (ESAME) of the new state entry */
for (i = 0; i < 16; i++)
{
#if defined(FEATURE_ESAME)
/* Store the 64-bit general register in the stack entry */
STORE_DW(regs->mainstor + abs, regs->GR_G(i));
#ifdef STACK_DEBUG
logmsg (_("stack: GPR%d=" F_GREG " stored at V:" F_VADR
" A:" F_RADR "\n"), i, regs->GR_G(i), lsea, abs);
#endif /*STACK_DEBUG*/
#else /*!defined(FEATURE_ESAME)*/
/* Store the 32-bit general register in the stack entry */
STORE_FW(regs->mainstor + abs, regs->GR_L(i));
#ifdef STACK_DEBUG
logmsg (_("stack: GPR%d=" F_GREG " stored at V:" F_VADR
" A:" F_RADR "\n"), i, regs->GR_L(i), lsea, abs);
#endif /*STACK_DEBUG*/
#endif /*!defined(FEATURE_ESAME)*/
/* Update the virtual and absolute addresses */
lsea += LSSE_REGSIZE;
LSEA_WRAP(lsea);
abs += LSSE_REGSIZE;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
} /* end for(i) */
#if !defined(FEATURE_ESAME)
/* For ESA/390, store access registers 0-15 in bytes 64-127 */
for (i = 0; i < 16; i++)
{
/* Store the access register in the stack entry */
STORE_FW(regs->mainstor + abs, regs->AR(i));
#ifdef STACK_DEBUG
logmsg (_("stack: AR%d=" F_AREG " stored at V:" F_VADR
" A:" F_RADR "\n"), i, regs->AR(i), lsea, abs);
#endif /*STACK_DEBUG*/
/* Update the virtual and absolute addresses */
lsea += 4;
LSEA_WRAP(lsea);
abs += 4;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
} /* end for(i) */
#endif /*!defined(FEATURE_ESAME)*/
/* Store the PKM, SASN, EAX, and PASN in bytes 128-135 */
STORE_FW(regs->mainstor + abs, regs->CR_L(3));
STORE_HW(regs->mainstor + abs + 4, regs->CR_LHH(8));
STORE_HW(regs->mainstor + abs + 6, regs->CR_LHL(4));
#ifdef STACK_DEBUG
logmsg (_("stack: PKM=%2.2X%2.2X SASN=%2.2X%2.2X "
"EAX=%2.2X%2.2X PASN=%2.2X%2.2X \n"
"stored at V:" F_VADR " A:" F_RADR "\n"),
regs->mainstor[abs], regs->mainstor[abs+1],
regs->mainstor[abs+2], regs->mainstor[abs+3],
regs->mainstor[abs+4], regs->mainstor[abs+5],
regs->mainstor[abs+6], regs->mainstor[abs+7],
lsea, abs);
#endif /*STACK_DEBUG*/
/* Update virtual and absolute addresses to point to byte 136 */
lsea += 8;
LSEA_WRAP(lsea);
abs += 8;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
/* Store bits 0-63 of the current PSW in bytes 136-143 */
ARCH_DEP(store_psw) (regs, currpsw);
memcpy (regs->mainstor + abs, currpsw, 8);
#if defined(FEATURE_ESAME)
/* For ESAME, use the addressing mode bits from the return
address to set bits 31 and 32 of bytes 136-143 */
if (retna & 0x01)
{
/* For a 64-bit return address, set bits 31 and 32 */
regs->mainstor[abs+3] |= 0x01;
regs->mainstor[abs+4] |= 0x80;
retna &= 0xFFFFFFFFFFFFFFFEULL;
}
else if (retna & 0x80000000)
{
/* For a 31-bit return address, clear bit 31 and set bit 32 */
regs->mainstor[abs+3] &= 0xFE;
regs->mainstor[abs+4] |= 0x80;
retna &= 0x7FFFFFFF;
}
else
{
/* For a 24-bit return address, clear bits 31 and 32 */
regs->mainstor[abs+3] &= 0xFE;
regs->mainstor[abs+4] &= 0x7F;
retna &= 0x00FFFFFF;
}
#else /*!defined(FEATURE_ESAME)*/
/* For ESA/390, replace bytes 140-143 by the return address,
with the high-order bit indicating the addressing mode */
STORE_FW(regs->mainstor + abs + 4, retna);
#endif /*!defined(FEATURE_ESAME)*/
#ifdef STACK_DEBUG
logmsg (_("stack: PSW=%2.2X%2.2X%2.2X%2.2X %2.2X%2.2X%2.2X%2.2X "
"stored at V:" F_VADR " A:" F_RADR "\n"),
regs->mainstor[abs], regs->mainstor[abs+1],
regs->mainstor[abs+2], regs->mainstor[abs+3],
regs->mainstor[abs+4], regs->mainstor[abs+5],
regs->mainstor[abs+6], regs->mainstor[abs+7],
lsea, abs);
#endif /*STACK_DEBUG*/
/* Update virtual and absolute addresses to point to byte 144 */
lsea += 8;
LSEA_WRAP(lsea);
abs += 8;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
/* Store bytes 144-151 according to PC or BAKR */
if (etype == LSED_UET_PC)
{
#if defined(FEATURE_CALLED_SPACE_IDENTIFICATION)
/* Store the called-space identification in bytes 144-147 */
STORE_FW(regs->mainstor + abs, csi);
#endif /*defined(FEATURE_CALLED_SPACE_IDENTIFICATION)*/
/* Store the PC number in bytes 148-151 */
STORE_FW(regs->mainstor + abs + 4, pcnum);
}
else
{
#if defined(FEATURE_ESAME)
/* Store the called address and amode in bytes 144-151 */
STORE_DW(regs->mainstor + abs, calla);
#else /*!defined(FEATURE_ESAME)*/
/* Store the called address and amode in bytes 148-151 */
STORE_FW(regs->mainstor + abs + 4, calla);
#endif /*!defined(FEATURE_ESAME)*/
}
/* Update virtual and absolute addresses to point to byte 152 */
lsea += 8;
LSEA_WRAP(lsea);
abs += 8;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
/* Store zeroes in bytes 152-159 */
memset (regs->mainstor+abs, 0, 8);
/* Update virtual and absolute addresses to point to byte 160 */
lsea += 8;
LSEA_WRAP(lsea);
abs += 8;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
#if defined(FEATURE_ESAME)
/* For ESAME, store zeroes in bytes 160-167 */
memset (regs->mainstor+abs, 0, 8);
/* Update virtual and absolute addresses to point to byte 168 */
lsea += 8;
LSEA_WRAP(lsea);
abs += 8;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
/* For ESAME, store the return address in bytes 168-175 */
STORE_DW (regs->mainstor + abs, retna);
#ifdef STACK_DEBUG
logmsg (_("stack: PSW2=%2.2X%2.2X%2.2X%2.2X %2.2X%2.2X%2.2X%2.2X "
"stored at V:" F_VADR " A:" F_RADR "\n"),
regs->mainstor[abs], regs->mainstor[abs+1],
regs->mainstor[abs+2], regs->mainstor[abs+3],
regs->mainstor[abs+4], regs->mainstor[abs+5],
regs->mainstor[abs+6], regs->mainstor[abs+7],
lsea, abs);
#endif /*STACK_DEBUG*/
/* Update virtual and absolute addresses to point to byte 176 */
lsea += 8;
LSEA_WRAP(lsea);
abs += 8;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
/* Skip bytes 176-223 of the new stack entry */
lsea += 48;
LSEA_WRAP(lsea);
abs += 48;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) < 48)
abs = abs2 | (lsea & PAGEFRAME_BYTEMASK);
/* For ESAME, store access registers 0-15 in bytes 224-287 */
for (i = 0; i < 16; i++)
{
/* Store the access register in the stack entry */
STORE_FW(regs->mainstor + abs, regs->AR(i));
#ifdef STACK_DEBUG
logmsg (_("stack: AR%d=" F_AREG " stored at V:" F_VADR
" A:" F_RADR "\n"), i, regs->AR(i), lsea, abs);
#endif /*STACK_DEBUG*/
/* Update the virtual and absolute addresses */
lsea += 4;
LSEA_WRAP(lsea);
abs += 4;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
} /* end for(i) */
#endif /*defined(FEATURE_ESAME)*/
/* Build the new linkage stack entry descriptor */
memset (&lsed2, 0, sizeof(LSED));
lsed2.uet = etype & LSED_UET_ET;
lsed2.si = lsed.si;
rfs -= LSSE_SIZE;
STORE_HW(lsed2.rfs,rfs);
/* Store the linkage stack entry descriptor in the last eight
bytes of the new state entry (bytes 160-167 for ESA/390,
or bytes 288-295 for ESAME) */
memcpy (regs->mainstor+abs, &lsed2, sizeof(LSED));
#ifdef STACK_DEBUG
logmsg (_("stack: New stack entry at " F_VADR "\n"), lsea);
logmsg (_("stack: et=%2.2X si=%2.2X rfs=%2.2X%2.2X nes=%2.2X%2.2X\n"),
lsed2.uet, lsed2.si, lsed2.rfs[0],
lsed2.rfs[1], lsed2.nes[0], lsed2.nes[1]);
#endif /*STACK_DEBUG*/
/* [5.12.3.3] Update the current entry */
STORE_HW(lsed.nes, LSSE_SIZE);
absold = ARCH_DEP(abs_stack_addr) (lseaold, regs, ACCTYPE_WRITE);
memcpy (regs->mainstor+absold, &lsed, sizeof(LSED));
#ifdef STACK_DEBUG
logmsg (_("stack: Previous stack entry updated at A:" F_RADR "\n"),
absold);
logmsg (_("stack: et=%2.2X si=%2.2X rfs=%2.2X%2.2X nes=%2.2X%2.2X\n"),
lsed.uet, lsed.si, lsed.rfs[0],
lsed.rfs[1], lsed.nes[0], lsed.nes[1]);
#endif /*STACK_DEBUG*/
/* [5.12.3.4] Update control register 15 */
regs->CR(15) = lsea & CR15_LSEA;
#ifdef STACK_DEBUG
logmsg (_("stack: CR15=" F_CREG "\n"), regs->CR(15));
#endif /*STACK_DEBUG*/
} /* end function ARCH_DEP(form_stack_entry) */
/*-------------------------------------------------------------------*/
/* Locate the current linkage stack entry */
/* */
/* Input: */
/* prinst 1=PR instruction, 0=EREG/EREGG/ESTA/MSTA instruction */
/* lsedptr Pointer to an LSED structure */
/* regs Pointer to the CPU register context */
/* Output: */
/* The entry descriptor for the current state entry in the */
/* linkage stack is copied into the LSED structure. */
/* The home virtual address of the entry descriptor is */
/* returned as the function return value. */
/* */
/* This function performs the first part of the unstacking */
/* process for the Program Return (PR), Extract Stacked */
/* Registers (EREG/EREGG), Extract Stacked State (ESTA), */
/* and Modify Stacked State (MSTA) instructions. */
/* */
/* In the event of any stack error, this function generates */
/* a program check and does not return. */
/*-------------------------------------------------------------------*/
VADR ARCH_DEP(locate_stack_entry) (int prinst, LSED *lsedptr,
REGS *regs)
{
VADR lsea; /* Linkage stack entry addr */
RADR abs; /* Absolute address */
VADR bsea; /* Backward stack entry addr */
/* [5.12.4] Special operation exception if ASF is not enabled,
or if DAT is off, or if in secondary-space mode */
if (!ASF_ENABLED(regs)
|| REAL_MODE(®s->psw)
|| SECONDARY_SPACE_MODE(®s->psw))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIAL_OPERATION_EXCEPTION);
/* Special operation exception if home space mode PR instruction */
if (prinst && HOME_SPACE_MODE(®s->psw))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIAL_OPERATION_EXCEPTION);
/* [5.12.4.1] Locate current entry and process header entry */
/* Obtain the virtual address of the current entry from CR15 */
lsea = regs->CR(15) & CR15_LSEA;
/* Fetch the entry descriptor of the current entry */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
memcpy (lsedptr, regs->mainstor+abs, sizeof(LSED));
#ifdef STACK_DEBUG
logmsg (_("stack: Stack entry located at " F_VADR "\n"), lsea);
logmsg (_("stack: et=%2.2X si=%2.2X rfs=%2.2X%2.2X nes=%2.2X%2.2X\n"),
lsedptr->uet, lsedptr->si, lsedptr->rfs[0],
lsedptr->rfs[1], lsedptr->nes[0], lsedptr->nes[1]);
#endif /*STACK_DEBUG*/
/* Check for a header entry */
if ((lsedptr->uet & LSED_UET_ET) == LSED_UET_HDR)
{
/* For PR instruction only, generate stack operation exception
if the unstack suppression bit in the header entry is set */
if (prinst && (lsedptr->uet & LSED_UET_U))
ARCH_DEP(program_interrupt) (regs, PGM_STACK_OPERATION_EXCEPTION);
/* Calculate the virtual address of the header entry,
which is 8 bytes before the entry descriptor */
lsea -= 8;
LSEA_WRAP(lsea);
/* Fetch the backward stack entry address from the header */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
FETCH_BSEA(bsea,regs->mainstor + abs);
#ifdef STACK_DEBUG
logmsg (_("stack: Stack entry located at " F_VADR "\n"), bsea);
#endif /*STACK_DEBUG*/
/* Stack empty exception if backward address is not valid */
if ((bsea & LSHE_BVALID) == 0)
ARCH_DEP(program_interrupt) (regs, PGM_STACK_EMPTY_EXCEPTION);
/* Extract the virtual address of the entry descriptor
of the last entry in the previous section */
lsea = bsea & LSHE_BSEA;
/* Fetch the entry descriptor of the designated entry */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
memcpy (lsedptr, regs->mainstor+abs, sizeof(LSED));
#ifdef STACK_DEBUG
logmsg (_("stack: et=%2.2X si=%2.2X rfs=%2.2X%2.2X "
"nes=%2.2X%2.2X\n"),
lsedptr->uet, lsedptr->si, lsedptr->rfs[0],
lsedptr->rfs[1], lsedptr->nes[0], lsedptr->nes[1]);
#endif /*STACK_DEBUG*/
/* Stack specification exception if this is also a header */
if ((lsedptr->uet & LSED_UET_ET) == LSED_UET_HDR)
ARCH_DEP(program_interrupt) (regs, PGM_STACK_SPECIFICATION_EXCEPTION);
} /* end if(LSED_UET_HDR) */
/* [5.12.4.2] Check for a state entry */
/* Stack type exception if this is not a state entry */
if ((lsedptr->uet & LSED_UET_ET) != LSED_UET_BAKR
&& (lsedptr->uet & LSED_UET_ET) != LSED_UET_PC)
ARCH_DEP(program_interrupt) (regs, PGM_STACK_TYPE_EXCEPTION);
/* [5.12.4.3] For PR instruction only, stack operation exception
if the unstack suppression bit in the state entry is set */
if (prinst && (lsedptr->uet & LSED_UET_U))
ARCH_DEP(program_interrupt) (regs, PGM_STACK_OPERATION_EXCEPTION);
/* Return the virtual address of the entry descriptor */
return lsea;
} /* end function ARCH_DEP(locate_stack_entry) */
/*-------------------------------------------------------------------*/
/* Stack modify */
/* */
/* Input: */
/* lsea Virtual address of linkage stack entry descriptor */
/* m1 Left 32 bits to be stored in state entry */
/* m2 Right 32 bits to be stored in state entry */
/* regs Pointer to the CPU register context */
/* */
/* This function places eight bytes of information into the */
/* modifiable area of a state entry in the linkage stack. It */
/* is called by the Modify Stacked State (MSTA) instruction */
/* after it has located the current state entry. */
/* */
/* If a translation exception occurs when accessing the stack */
/* entry, then a program check will be generated by the */
/* abs_stack_addr subroutine, and the function will not return. */
/*-------------------------------------------------------------------*/
void ARCH_DEP(stack_modify) (VADR lsea, U32 m1, U32 m2, REGS *regs)
{
RADR abs; /* Absolute address */
/* Point back to byte 152 of the state entry */
lsea -= LSSE_SIZE - sizeof(LSED);
lsea += 152;
LSEA_WRAP(lsea);
/* Store the modify values into the state entry */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_WRITE);
STORE_FW(regs->mainstor + abs, m1);
STORE_FW(regs->mainstor + abs + 4, m2);
} /* end function ARCH_DEP(stack_modify) */
/*-------------------------------------------------------------------*/
/* Stack extract */
/* */
/* Input: */
/* lsea Virtual address of linkage stack entry descriptor */
/* r1 The number of an even-odd pair of registers */
/* code A code indicating which bytes are to be extracted: */
/* 0 = Bytes 128-135 (PKN/SASN/EAX/PASN) */
/* 1 = ESA/390: Bytes 136-143 (PSW) */
/* ESAME: Bytes 136-139, 140.0, 168-175.33-63 */
/* (ESA/390-format PSW) */
/* 2 = Bytes 144-151 (Branch address or PC number) */
/* 3 = Bytes 152-159 (Modifiable area) */
/* 4 = Bytes 136-143 and 168-175 (ESAME-format PSW) */
/* regs Pointer to the CPU register context */
/* */
/* This function extracts 64 or 128 bits of information from */
/* the status area of a state entry in the linkage stack. It */
/* is called by the Extract Stacked State (ESTA) instruction */
/* after it has located the current state entry. */
/* */
/* For codes 0 through 3, the rightmost 32 bits of the R1 and */
/* R1+1 registers are updated (the leftmost 32 bits remain */
/* unchanged for ESAME). For code 4, which is valid only for */
/* ESAME, all 64 bits of the R1 and R1+1 registers are loaded. */
/* */
/* If a translation exception occurs when accessing the stack */
/* entry, then a program check will be generated by the */
/* abs_stack_addr subroutine, and the function will not return. */
/*-------------------------------------------------------------------*/
void ARCH_DEP(stack_extract) (VADR lsea, int r1, int code, REGS *regs)
{
RADR abs; /* Absolute address */
/* Point back to byte 128 of the state entry */
lsea -= LSSE_SIZE - sizeof(LSED);
lsea += 128;
#if defined(FEATURE_ESAME)
/* For codes 1 and 4, extract bytes 136-143 and 168-175 */
if (code == 1 || code == 4)
{
U64 psw1, psw2;
/* Point to byte 136 of the state entry */
lsea += 8;
LSEA_WRAP(lsea);
/* Load bits 0-63 of ESAME PSW from bytes 136-143 */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
FETCH_DW(psw1, regs->mainstor + abs);
/* Point to byte 168 of the state entry */
lsea += 32;
abs += 32;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) < 32)
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
/* Load bits 64-127 of ESAME PSW from bytes 168-175 */
FETCH_DW(psw2, regs->mainstor + abs);
/* For code 4, return ESAME PSW in general register pair */
if (code == 4)
{
regs->GR_G(r1) = psw1;
regs->GR_G(r1+1) = psw2;
return;
}
/* For code 1, convert ESAME PSW to ESA/390 format */
regs->GR_L(r1) = (psw1 >> 32) | 0x00080000;
regs->GR_L(r1+1) = (psw1 & 0x80000000)
| (psw2 & 0x7FFFFFFF);
/* Set low-order bit of R1+1 if IA exceeds 31-bit address */
if (psw2 > 0x7FFFFFFF)
regs->GR_L(r1+1) |= 0x01;
return;
} /* if(code==1||code==4) */
#endif /*defined(FEATURE_ESAME)*/
/* Point to byte 128, 136, 144, or 152 depending on the code */
lsea += code * 8;
LSEA_WRAP(lsea);
/* Load the general register pair from the state entry */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
FETCH_FW(regs->GR_L(r1), regs->mainstor + abs);
FETCH_FW(regs->GR_L(r1+1), regs->mainstor + abs + 4);
} /* end function ARCH_DEP(stack_extract) */
/*-------------------------------------------------------------------*/
/* Unstack registers */
/* */
/* Input: */
/* gtype 0=EREG instruction, 1=EREGG or PR instruction */
/* lsea Virtual address of linkage stack entry descriptor */
/* r1 The number of the first register to be loaded */
/* r2 The number of the last register to be loaded */
/* regs Pointer to the CPU register context */
/* */
/* This function loads a range of general registers and */
/* access registers from the specified linkage stack entry. */
/* It is called by the Extract Stacked Registers (EREG/EREGG) */
/* and Program Return (PR) instructions after they have located */
/* the current state entry in the linkage stack. */
/* */
/* If a translation exception occurs when accessing the stack */
/* entry, then a program check will be generated by the */
/* abs_stack_addr subroutine, and the function will not return. */
/* Since the stack entry can only span at most two pages, and */
/* the caller will have already successfully accessed the */
/* entry descriptor which is at the end of the stack entry, */
/* the only place a translation exception can occur is when */
/* attempting to load the first register, in which case the */
/* operation is nullified with all registers unchanged. */
/*-------------------------------------------------------------------*/
void ARCH_DEP(unstack_registers) (int gtype, VADR lsea,
int r1, int r2, REGS *regs)
{
RADR abs, abs2 = 0; /* Absolute address */
VADR firstbyte, /* First byte to be fetched */
lastbyte; /* Last byte to be fetched */
int i; /* Array subscript */
UNREFERENCED(gtype);
/* Point back to byte 0 of the state entry */
lsea -= LSSE_SIZE - sizeof(LSED);
LSEA_WRAP(lsea);
/* Determine first and last byte to fetch from the state entry */
firstbyte = lsea + ((r1 > r2) ? 0 : r1) * LSSE_REGSIZE;
lastbyte = lsea + (LSSE_SIZE - 69) + (((r1 > r2) ? 15 : r2) * 4);
lsea = firstbyte;
/* Obtain absolute address of the state entry */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
/* If the state entry crosses a page boundary, obtain the
absolute address of the second page of the stack entry */
if( (firstbyte & PAGEFRAME_PAGEMASK)
!= (lastbyte & PAGEFRAME_PAGEMASK))
abs2 = ARCH_DEP(abs_stack_addr)
(lastbyte & PAGEFRAME_PAGEMASK, regs, ACCTYPE_READ);
#ifdef STACK_DEBUG
logmsg (_("stack: Unstacking registers %d-%d from " F_VADR "\n"),
r1, r2, lsea);
#endif /*STACK_DEBUG*/
/* Load general registers from bytes 0-63 (for ESA/390), or
bytes 0-127 (for ESAME) of the state entry */
for (i = ((r1 > r2) ? 0 : r1); i <= 15; i++)
{
/* Load the general register from the stack entry */
if ((r1 <= r2 && i >= r1 && i <= r2)
|| (r1 > r2 && (i >= r1 || i <= r2)))
{
#if defined(FEATURE_ESAME)
if (gtype)
{
/* For ESAME PR and EREGG instructions,
load all 64 bits of the register */
FETCH_DW(regs->GR_G(i), regs->mainstor + abs);
} else {
/* For ESAME EREG instruction, load bits 32-63 of
the register, and leave bits 0-31 unchanged */
FETCH_FW(regs->GR_L(i), regs->mainstor + abs + 4);
}
#ifdef STACK_DEBUG
logmsg (_("stack: GPR%d=" F_GREG " loaded from V:" F_VADR
" A:" F_RADR "\n"), i, regs->GR(i), lsea, abs);
#endif /*STACK_DEBUG*/
#else /*!defined(FEATURE_ESAME)*/
/* For ESA/390, load a 32-bit general register */
FETCH_FW(regs->GR_L(i), regs->mainstor + abs);
#ifdef STACK_DEBUG
logmsg (_("stack: GPR%d=" F_GREG " loaded from V:" F_VADR
" A:" F_RADR "\n"), i, regs->GR(i), lsea, abs);
#endif /*STACK_DEBUG*/
#endif /*!defined(FEATURE_ESAME)*/
}
/* Update the virtual and absolute addresses */
lsea += LSSE_REGSIZE;
LSEA_WRAP(lsea);
abs += LSSE_REGSIZE;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
} /* end for(i) */
#if defined(FEATURE_ESAME)
/* For ESAME, skip the next 96 bytes of the state entry */
lsea += 96; abs += 96;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) < 96)
abs = abs2 | (lsea & PAGEFRAME_BYTEMASK);
#endif /*defined(FEATURE_ESAME)*/
/* Load access registers from bytes 64-127 (for ESA/390), or
bytes 224-280 (for ESAME) of the state entry */
for (i = 0; i <= ((r1 > r2) ? 15 : r2); i++)
{
/* Load the access register from the stack entry */
if ((r1 <= r2 && i >= r1 && i <= r2)
|| (r1 > r2 && (i >= r1 || i <= r2)))
{
FETCH_FW(regs->AR(i),regs->mainstor + abs);
#ifdef STACK_DEBUG
logmsg (_("stack: AR%d=" F_AREG " loaded from V:" F_VADR
" A:" F_RADR "\n"), i, regs->AR(i), lsea, abs);
#endif /*STACK_DEBUG*/
}
/* Update the virtual and absolute addresses */
lsea += 4;
LSEA_WRAP(lsea);
abs += 4;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = abs2;
} /* end for(i) */
} /* end function ARCH_DEP(unstack_registers) */
/*-------------------------------------------------------------------*/
/* Program return unstack */
/* */
/* Input: */
/* regs Pointer to a copy of the CPU register context */
/* Output: */
/* lsedap The absolute address of the entry descriptor of */
/* the new current entry on the linkage stack. */
/* rc Return code from load_psw, checked later for PIC 06 */
/* Return value: */
/* The type of entry unstacked: LSED_UET_BAKR or LSED_UET_PC */
/* */
/* This function performs the restoring and updating parts */
/* of the unstacking process for the Program Return (PR) */
/* instruction. If a program exception occurs during the PR */
/* instruction (either during or after the unstack), then the */
/* effects of the instruction must be nullified or suppressed. */
/* This is achieved by updating a copy of the CPU register */
/* context instead of the actual register context. */
/* The current register context is replaced by the copy */
/* only on successful completion of the PR instruction. */
/* */
/* In the event of any stack error, this function generates */
/* a program check and does not return. */
/*-------------------------------------------------------------------*/
int ARCH_DEP(program_return_unstack) (REGS *regs, RADR *lsedap, int *rc)
{
QWORD newpsw; /* New PSW */
LSED lsed; /* Linkage stack entry desc. */
VADR lsea; /* Linkage stack entry addr */
RADR abs; /* Absolute address */
int permode; /* 1=PER mode is set in PSW */
U16 pkm; /* PSW key mask */
U16 sasn; /* Secondary ASN */
U16 eax; /* Extended AX */
U16 pasn; /* Primary ASN */
VADR lsep; /* Virtual addr of entry desc.
of previous stack entry */
/* Find the virtual address of the entry descriptor
of the current state entry in the linkage stack */
lsea = ARCH_DEP(locate_stack_entry) (1, &lsed, regs);
/* [5.12.4.3] Restore information from stack entry */
/* Load registers 2-14 from the stack entry */
ARCH_DEP(unstack_registers) (1, lsea, 2, 14, regs);
/* Point back to the entry descriptor of previous stack entry */
lsep = lsea - LSSE_SIZE;
LSEA_WRAP(lsep);
/* Point back to byte 128 of the current state entry */
lsea -= LSSE_SIZE - sizeof(LSED);
lsea += 128;
LSEA_WRAP(lsea);
/* Translate virtual address to absolute address */
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
/* For a call state entry, replace the PKM, SASN, EAX, and PASN */
if ((lsed.uet & LSED_UET_ET) == LSED_UET_PC)
{
/* Fetch the PKM from bytes 128-129 of the stack entry */
FETCH_HW(pkm,regs->mainstor + abs);
/* Fetch the SASN from bytes 130-131 of the stack entry */
FETCH_HW(sasn,regs->mainstor + abs + 2);
/* Fetch the EAX from bytes 132-133 of the stack entry */
FETCH_HW(eax,regs->mainstor + abs + 4);
/* Fetch the PASN from bytes 134-135 of the stack entry */
FETCH_HW(pasn,regs->mainstor + abs + 6);
#ifdef STACK_DEBUG
logmsg (_("stack: PKM=%2.2X%2.2X SASN=%2.2X%2.2X "
"EAX=%2.2X%2.2X PASN=%2.2X%2.2X \n"
"loaded from V:" F_VADR " A:" F_RADR "\n"),
regs->mainstor[abs], regs->mainstor[abs+1],
regs->mainstor[abs+2], regs->mainstor[abs+3],
regs->mainstor[abs+4], regs->mainstor[abs+5],
regs->mainstor[abs+6], regs->mainstor[abs+7],
lsea, abs);
#endif /*STACK_DEBUG*/
/* Load PKM into CR3 bits 0-15 (32-47) */
regs->CR_LHH(3) = pkm;
/* Load SASN into CR3 bits 16-31 (48-63) */
regs->CR_LHL(3) = sasn;
/* Load EAX into CR8 bits 0-15 (32-47) */
regs->CR_LHH(8) = eax;
/* Load PASN into CR4 bits 16-31 (48-63) */
regs->CR_LHL(4) = pasn;
} /* end if(LSED_UET_PC) */
/* Update virtual and absolute addresses to point to byte 136 */
lsea += 8;
LSEA_WRAP(lsea);
abs += 8;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) == 0x000)
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
/* Save the PER mode bit from the current PSW */
permode = (regs->psw.sysmask & PSW_PERMODE) ? 1 : 0;
#ifdef STACK_DEBUG
logmsg (_("stack: PSW=%2.2X%2.2X%2.2X%2.2X %2.2X%2.2X%2.2X%2.2X "
"loaded from V:" F_VADR " A:" F_RADR "\n"),
regs->mainstor[abs], regs->mainstor[abs+1],
regs->mainstor[abs+2], regs->mainstor[abs+3],
regs->mainstor[abs+4], regs->mainstor[abs+5],
regs->mainstor[abs+6], regs->mainstor[abs+7],
lsea, abs);
#endif /*STACK_DEBUG*/
/* Copy PSW bits 0-63 from bytes 136-143 of the stack entry */
memcpy (newpsw, regs->mainstor + abs, 8);
#if defined(FEATURE_ESAME)
/* For ESAME, advance to byte 168 of the stack entry */
lsea += 32;
LSEA_WRAP(lsea);
abs += 32;
/* Recalculate absolute address if page boundary crossed */
if ((lsea & PAGEFRAME_BYTEMASK) < 32)
abs = ARCH_DEP(abs_stack_addr) (lsea, regs, ACCTYPE_READ);
/* Copy ESAME PSW bits 64-127 from bytes 168-175 */
memcpy (newpsw + 8, regs->mainstor + abs, 8);
#endif /*defined(FEATURE_ESAME)*/
obtain_lock(&sysblk.intlock);
/* Load new PSW using the bytes extracted from the stack entry */
/* The rc will be checked by calling routine for PIC 06 */
*rc = ARCH_DEP(load_psw) (regs, newpsw);
/* Restore the PER mode bit from the current PSW */
if (permode)
regs->psw.sysmask |= PSW_PERMODE;
else
regs->psw.sysmask &= ~PSW_PERMODE;
/* restore PER masks which could have been wiped out by load_psw */
SET_IC_PER_MASK(regs);
release_lock(&sysblk.intlock);
/* [5.12.4.4] Pass back the absolute address of the entry
descriptor of the preceding linkage stack entry. The
next entry size field of this entry will be cleared on
successful completion of the PR instruction */
*lsedap = ARCH_DEP(abs_stack_addr) (lsep, regs, ACCTYPE_WRITE);
/* [5.12.4.5] Update CR15 to point to the previous entry */
regs->CR(15) = lsep & CR15_LSEA;
#ifdef STACK_DEBUG
logmsg (_("stack: CR15=" F_CREG "\n"), regs->CR(15));
#endif /*STACK_DEBUG*/
/* Return the entry type of the unstacked state entry */
return (lsed.uet & LSED_UET_ET);
} /* end function ARCH_DEP(program_return_unstack) */
#endif /*defined(FEATURE_LINKAGE_STACK)*/
#if !defined(_GEN_ARCH)
#if defined(_ARCHMODE2)
#define _GEN_ARCH _ARCHMODE2
#include "stack.c"
#endif
#if defined(_ARCHMODE3)
#undef _GEN_ARCH
#define _GEN_ARCH _ARCHMODE3
#include "stack.c"
#endif
#endif /*!defined(_GEN_ARCH)*/
|