1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
/* CLOCK.C (c) Copyright Jan Jaeger, 2000-2009 */
/* TOD Clock functions */
/*-------------------------------------------------------------------*/
/* The emulated hardware clock is based on the host clock, adjusted */
/* by means of an offset and a steering rate. */
/*-------------------------------------------------------------------*/
#include "hstdinc.h"
#if !defined(_HENGINE_DLL_)
#define _HENGINE_DLL_
#endif
#include "hercules.h"
#include "opcode.h"
#include "inline.h"
#include "sr.h"
#if !defined(_CLOCK_C_)
#define _CLOCK_C_
#include "clock.h"
// static int clock_state = CC_CLOCK_SET;
static CSR old;
static CSR new;
static CSR *current = &new;
void csr_reset()
{
new.start_time = 0;
new.base_offset = 0;
new.fine_s_rate = 0;
new.gross_s_rate = 0;
current = &new;
old = new;
}
static U64 universal_tod;
static U64 universal_clock(void) /* really: any clock used as a base */
{
struct timeval tv;
gettimeofday (&tv, NULL);
/* Load number of seconds since 00:00:00 01 Jan 1970 */
universal_tod = (U64)tv.tv_sec;
universal_tod += SECONDS_IN_SEVENTY_YEARS;
/* Convert to microseconds */
universal_tod = (universal_tod * 1000000) + tv.tv_usec;
/* Shift left 4 bits so that bits 0-7=TOD Clock Epoch,
bits 8-59=TOD Clock bits 0-51, bits 60-63=zero */
universal_tod <<= 4;
return universal_tod;
}
/* The hercules hardware clock, based on the universal clock, but */
/* running at its own speed as optionally set by set_tod_steering() */
/* The hardware clock returns a unique value */
static double hw_steering = 0.0; /* Current TOD clock steering rate */
static U64 hw_episode; /* TOD of start of steering episode */
static S64 hw_offset = 0; /* Current offset between TOD and HW */
// static U64 hw_tod = 0; /* Globally defined in clock.h */
static inline U64 hw_adjust(U64 base_tod)
{
/* Apply hardware offset, this is the offset achieved by all
previous steering episodes */
base_tod += hw_offset;
/* Apply the steering offset from the current steering episode */
base_tod += (S64)(base_tod - hw_episode) * hw_steering;
/* Ensure that the clock returns a unique value */
if(hw_tod < base_tod)
return base_tod;
else
return hw_tod += 0x10;
}
U64 hw_clock(void)
{
U64 temp_tod;
obtain_lock(&sysblk.todlock);
/* Get the time of day (GMT) */
temp_tod = universal_clock();
/* Ajust speed and ensure uniqueness */
hw_tod = hw_adjust(temp_tod);
release_lock(&sysblk.todlock);
return hw_tod;
}
static U64 hw_clock_l(void)
{
hw_tod = hw_adjust(universal_clock());
return hw_tod;
}
/* set_tod_steering(double) sets a new steering rate. */
/* When a new steering episode begins, the offset is adjusted, */
/* and the new steering rate takes effect */
void set_tod_steering(double steering)
{
obtain_lock(&sysblk.todlock);
hw_offset = hw_clock_l() - universal_tod;
hw_episode = hw_tod;
hw_steering = steering;
release_lock(&sysblk.todlock);
}
/* Start a new episode */
static inline void start_new_episode()
{
hw_offset = hw_tod - universal_tod;
hw_episode = hw_tod;
new.start_time = hw_episode;
hw_steering = ldexp(2,-44) * (S32)(new.fine_s_rate + new.gross_s_rate);
current = &new;
}
/* Prepare for a new episode */
static inline void prepare_new_episode()
{
if(current == &new)
{
old = new;
current = &old;
}
}
/* Ajust the epoch for all active cpu's in the configuration */
static U64 adjust_epoch_cpu_all(U64 epoch)
{
int cpu;
/* Update the TOD clock of all CPU's in the configuration
as we simulate 1 shared TOD clock, and do not support the
TOD clock sync check */
for (cpu = 0; cpu < MAX_CPU; cpu++)
{
obtain_lock(&sysblk.cpulock[cpu]);
if (IS_CPU_ONLINE(cpu))
sysblk.regs[cpu]->tod_epoch = epoch;
release_lock(&sysblk.cpulock[cpu]);
}
return epoch;
}
double get_tod_steering(void)
{
return hw_steering;
}
void set_tod_epoch(S64 epoch)
{
obtain_lock(&sysblk.todlock);
csr_reset();
tod_epoch = epoch;
release_lock(&sysblk.todlock);
adjust_epoch_cpu_all(epoch);
}
void adjust_tod_epoch(S64 epoch)
{
obtain_lock(&sysblk.todlock);
csr_reset();
tod_epoch += epoch;
release_lock(&sysblk.todlock);
adjust_epoch_cpu_all(tod_epoch);
}
void set_tod_clock(U64 tod)
{
set_tod_epoch(tod - hw_clock());
}
S64 get_tod_epoch()
{
return tod_epoch;
}
static void set_gross_steering_rate(S32 gsr)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.gross_s_rate = gsr;
release_lock(&sysblk.todlock);
}
static void set_fine_steering_rate(S32 fsr)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.fine_s_rate = fsr;
release_lock(&sysblk.todlock);
}
static void set_tod_offset(S64 offset)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.base_offset = offset;
release_lock(&sysblk.todlock);
}
static void adjust_tod_offset(S64 offset)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.base_offset = old.base_offset + offset;
release_lock(&sysblk.todlock);
}
/* The cpu timer is internally kept as an offset to the hw_clock()
* the cpu timer counts down as the clock approaches the timer epoch
*/
void set_cpu_timer(REGS *regs, S64 timer)
{
regs->cpu_timer = (timer >> 8) + hw_clock();
}
S64 cpu_timer(REGS *regs)
{
S64 timer;
timer = (regs->cpu_timer - hw_clock()) << 8;
return timer;
}
U64 tod_clock(REGS *regs)
{
U64 current_tod;
obtain_lock(&sysblk.todlock);
current_tod = hw_clock_l();
/* If we are in the old episode, and the new episode has arrived
then we must take action to start the new episode */
if(current == &old)
start_new_episode();
/* Set the clock to the new updated value with offset applied */
current_tod += current->base_offset;
tod_value = current_tod;
release_lock(&sysblk.todlock);
return current_tod + regs->tod_epoch;
}
#if defined(_FEATURE_INTERVAL_TIMER)
#if defined(_FEATURE_ECPSVM)
static inline S32 ecps_vtimer(REGS *regs)
{
return (S32)TOD_TO_ITIMER((S64)(regs->ecps_vtimer - hw_clock()));
}
static inline void set_ecps_vtimer(REGS *regs, S32 vtimer)
{
regs->ecps_vtimer = (U64)(hw_clock() + ITIMER_TO_TOD(vtimer));
regs->ecps_oldtmr = vtimer;
}
#endif /*defined(_FEATURE_ECPSVM)*/
S32 int_timer(REGS *regs)
{
return (S32)TOD_TO_ITIMER((S64)(regs->int_timer - hw_clock()));
}
void set_int_timer(REGS *regs, S32 itimer)
{
regs->int_timer = (U64)(hw_clock() + ITIMER_TO_TOD(itimer));
regs->old_timer = itimer;
}
int chk_int_timer(REGS *regs)
{
S32 itimer;
int pending = 0;
itimer = int_timer(regs);
if(itimer < 0 && regs->old_timer >= 0)
{
ON_IC_ITIMER(regs);
pending = 1;
regs->old_timer=itimer;
}
#if defined(_FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
itimer = ecps_vtimer(regs);
if(itimer < 0 && regs->ecps_oldtmr >= 0)
{
ON_IC_ECPSVTIMER(regs);
pending += 2;
}
}
#endif /*defined(_FEATURE_ECPSVM)*/
return pending;
}
#endif /*defined(_FEATURE_INTERVAL_TIMER)*/
/*-------------------------------------------------------------------*/
/* Update TOD clock */
/* */
/* This function updates the TOD clock. */
/* */
/* This function is called by timer_update_thread and by cpu_thread */
/* instructions that manipulate any of the timer related entities */
/* (clock comparator, cpu timer and interval timer). */
/* */
/* Internal function `check_timer_event' is called which will signal */
/* any timer related interrupts to the appropriate cpu_thread. */
/* */
/* Callers *must* own the todlock and *must not* own the intlock. */
/* */
/* update_tod_clock() returns the tod delta, by which the cpu timer */
/* has been adjusted. */
/* */
/*-------------------------------------------------------------------*/
// static U64 tod_value;
U64 update_tod_clock(void)
{
U64 new_clock;
obtain_lock(&sysblk.todlock);
new_clock = hw_clock_l();
/* If we are in the old episode, and the new episode has arrived
then we must take action to start the new episode */
if(current == &old)
start_new_episode();
/* Set the clock to the new updated value with offset applied */
new_clock += current->base_offset;
tod_value = new_clock;
release_lock(&sysblk.todlock);
/* Update the timers and check if either a clock related event has
become pending */
update_cpu_timer();
return new_clock;
}
#define SR_SYS_CLOCK_CURRENT_CSR ( SR_SYS_CLOCK | 0x001 )
#define SR_SYS_CLOCK_UNIVERSAL_TOD ( SR_SYS_CLOCK | 0x002 )
#define SR_SYS_CLOCK_HW_STEERING ( SR_SYS_CLOCK | 0x004 )
#define SR_SYS_CLOCK_HW_EPISODE ( SR_SYS_CLOCK | 0x005 )
#define SR_SYS_CLOCK_HW_OFFSET ( SR_SYS_CLOCK | 0x006 )
#define SR_SYS_CLOCK_OLD_CSR ( SR_SYS_CLOCK | 0x100 )
#define SR_SYS_CLOCK_OLD_CSR_START_TIME ( SR_SYS_CLOCK | 0x101 )
#define SR_SYS_CLOCK_OLD_CSR_BASE_OFFSET ( SR_SYS_CLOCK | 0x102 )
#define SR_SYS_CLOCK_OLD_CSR_FINE_S_RATE ( SR_SYS_CLOCK | 0x103 )
#define SR_SYS_CLOCK_OLD_CSR_GROSS_S_RATE ( SR_SYS_CLOCK | 0x104 )
#define SR_SYS_CLOCK_NEW_CSR ( SR_SYS_CLOCK | 0x200 )
#define SR_SYS_CLOCK_NEW_CSR_START_TIME ( SR_SYS_CLOCK | 0x201 )
#define SR_SYS_CLOCK_NEW_CSR_BASE_OFFSET ( SR_SYS_CLOCK | 0x202 )
#define SR_SYS_CLOCK_NEW_CSR_FINE_S_RATE ( SR_SYS_CLOCK | 0x203 )
#define SR_SYS_CLOCK_NEW_CSR_GROSS_S_RATE ( SR_SYS_CLOCK | 0x204 )
int clock_hsuspend(void *file)
{
int i;
char buf[SR_MAX_STRING_LENGTH];
i = (current == &new);
SR_WRITE_VALUE(file, SR_SYS_CLOCK_CURRENT_CSR, i, sizeof(i));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_UNIVERSAL_TOD, universal_tod, sizeof(universal_tod));
snprintf(buf, sizeof(buf), "%f", hw_steering);
SR_WRITE_STRING(file, SR_SYS_CLOCK_HW_STEERING, buf);
SR_WRITE_VALUE(file, SR_SYS_CLOCK_HW_EPISODE, hw_episode, sizeof(hw_episode));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_HW_OFFSET, hw_offset, sizeof(hw_offset));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_START_TIME, old.start_time, sizeof(old.start_time));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_BASE_OFFSET, old.base_offset, sizeof(old.base_offset));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_FINE_S_RATE, old.fine_s_rate, sizeof(old.fine_s_rate));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_GROSS_S_RATE, old.gross_s_rate, sizeof(old.gross_s_rate));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_START_TIME, new.start_time, sizeof(new.start_time));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_BASE_OFFSET, new.base_offset, sizeof(new.base_offset));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_FINE_S_RATE, new.fine_s_rate, sizeof(new.fine_s_rate));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_GROSS_S_RATE, new.gross_s_rate, sizeof(new.gross_s_rate));
return 0;
}
int clock_hresume(void *file)
{
size_t key, len;
int i;
float f;
char buf[SR_MAX_STRING_LENGTH];
memset(&old, 0, sizeof(CSR));
memset(&new, 0, sizeof(CSR));
current = &new;
universal_tod = 0;
hw_steering = 0.0;
hw_episode = 0;
hw_offset = 0;
do {
SR_READ_HDR(file, key, len);
switch (key) {
case SR_SYS_CLOCK_CURRENT_CSR:
SR_READ_VALUE(file, len, &i, sizeof(i));
current = i ? &new : &old;
break;
case SR_SYS_CLOCK_UNIVERSAL_TOD:
SR_READ_VALUE(file, len, &universal_tod, sizeof(universal_tod));
break;
case SR_SYS_CLOCK_HW_STEERING:
SR_READ_STRING(file, buf, len);
sscanf(buf, "%f",&f);
hw_steering = f;
break;
case SR_SYS_CLOCK_HW_EPISODE:
SR_READ_VALUE(file, len, &hw_episode, sizeof(hw_episode));
break;
case SR_SYS_CLOCK_HW_OFFSET:
SR_READ_VALUE(file, len, &hw_offset, sizeof(hw_offset));
break;
case SR_SYS_CLOCK_OLD_CSR_START_TIME:
SR_READ_VALUE(file, len, &old.start_time, sizeof(old.start_time));
break;
case SR_SYS_CLOCK_OLD_CSR_BASE_OFFSET:
SR_READ_VALUE(file, len, &old.base_offset, sizeof(old.base_offset));
break;
case SR_SYS_CLOCK_OLD_CSR_FINE_S_RATE:
SR_READ_VALUE(file, len, &old.fine_s_rate, sizeof(old.fine_s_rate));
break;
case SR_SYS_CLOCK_OLD_CSR_GROSS_S_RATE:
SR_READ_VALUE(file, len, &old.gross_s_rate, sizeof(old.gross_s_rate));
break;
case SR_SYS_CLOCK_NEW_CSR_START_TIME:
SR_READ_VALUE(file, len, &new.start_time, sizeof(new.start_time));
break;
case SR_SYS_CLOCK_NEW_CSR_BASE_OFFSET:
SR_READ_VALUE(file, len, &new.base_offset, sizeof(new.base_offset));
break;
case SR_SYS_CLOCK_NEW_CSR_FINE_S_RATE:
SR_READ_VALUE(file, len, &new.fine_s_rate, sizeof(new.fine_s_rate));
break;
case SR_SYS_CLOCK_NEW_CSR_GROSS_S_RATE:
SR_READ_VALUE(file, len, &new.gross_s_rate, sizeof(new.gross_s_rate));
break;
default:
SR_READ_SKIP(file, len);
break;
}
} while ((key & SR_SYS_MASK) == SR_SYS_CLOCK);
return 0;
}
#endif
#if defined(FEATURE_INTERVAL_TIMER)
static void ARCH_DEP(_store_int_timer_2) (REGS *regs,int getlock)
{
S32 itimer;
S32 vtimer=0;
if(getlock)
{
OBTAIN_INTLOCK(regs->hostregs?regs:NULL);
}
itimer=int_timer(regs);
STORE_FW(regs->psa->inttimer, itimer);
#if defined(FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
vtimer=ecps_vtimer(regs);
STORE_FW(regs->ecps_vtmrpt, vtimer);
}
#endif /*defined(FEATURE_ECPSVM)*/
chk_int_timer(regs);
#if defined(FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
regs->ecps_oldtmr = vtimer;
}
#endif /*defined(FEATURE_ECPSVM)*/
if(getlock)
{
RELEASE_INTLOCK(regs->hostregs?regs:NULL);
}
}
DLL_EXPORT void ARCH_DEP(store_int_timer) (REGS *regs)
{
ARCH_DEP(_store_int_timer_2) (regs,1);
}
void ARCH_DEP(store_int_timer_nolock) (REGS *regs)
{
ARCH_DEP(_store_int_timer_2) (regs,0);
}
DLL_EXPORT void ARCH_DEP(fetch_int_timer) (REGS *regs)
{
S32 itimer;
FETCH_FW(itimer, regs->psa->inttimer);
OBTAIN_INTLOCK(regs->hostregs?regs:NULL);
set_int_timer(regs, itimer);
#if defined(FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
FETCH_FW(itimer, regs->ecps_vtmrpt);
set_ecps_vtimer(regs, itimer);
}
#endif /*defined(FEATURE_ECPSVM)*/
RELEASE_INTLOCK(regs->hostregs?regs:NULL);
}
#endif
#if defined(FEATURE_TOD_CLOCK_STEERING)
void ARCH_DEP(set_gross_s_rate) (REGS *regs)
{
S32 gsr;
gsr = ARCH_DEP(vfetch4) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
set_gross_steering_rate(gsr);
}
void ARCH_DEP(set_fine_s_rate) (REGS *regs)
{
S32 fsr;
fsr = ARCH_DEP(vfetch4) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
set_fine_steering_rate(fsr);
}
void ARCH_DEP(set_tod_offset) (REGS *regs)
{
S64 offset;
offset = ARCH_DEP(vfetch8) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
set_tod_offset(offset >> 8);
}
void ARCH_DEP(adjust_tod_offset) (REGS *regs)
{
S64 offset;
offset = ARCH_DEP(vfetch8) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
adjust_tod_offset(offset >> 8);
}
void ARCH_DEP(query_physical_clock) (REGS *regs)
{
ARCH_DEP(vstore8) (universal_clock() << 8, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
void ARCH_DEP(query_steering_information) (REGS *regs)
{
PTFFQSI qsi;
obtain_lock(&sysblk.todlock);
STORE_DW(qsi.physclk, universal_clock() << 8);
STORE_DW(qsi.oldestart, old.start_time << 8);
STORE_DW(qsi.oldebase, old.base_offset << 8);
STORE_FW(qsi.oldfsr, old.fine_s_rate );
STORE_FW(qsi.oldgsr, old.gross_s_rate );
STORE_DW(qsi.newestart, new.start_time << 8);
STORE_DW(qsi.newebase, new.base_offset << 8);
STORE_FW(qsi.newfsr, new.fine_s_rate );
STORE_FW(qsi.newgsr, new.gross_s_rate );
release_lock(&sysblk.todlock);
ARCH_DEP(vstorec) (&qsi, sizeof(qsi)-1, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
void ARCH_DEP(query_tod_offset) (REGS *regs)
{
PTFFQTO qto;
obtain_lock(&sysblk.todlock);
STORE_DW(qto.todoff, (hw_clock_l() - universal_tod) << 8);
STORE_DW(qto.physclk, universal_tod << 8);
STORE_DW(qto.ltodoff, current->base_offset << 8);
STORE_DW(qto.todepoch, regs->tod_epoch << 8);
release_lock(&sysblk.todlock);
ARCH_DEP(vstorec) (&qto, sizeof(qto)-1, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
void ARCH_DEP(query_available_functions) (REGS *regs)
{
PTFFQAF qaf;
STORE_FW(qaf.sb[0] , 0xF0000000); /* Functions 0x00..0x1F */
STORE_FW(qaf.sb[1] , 0x00000000); /* Functions 0x20..0x3F */
STORE_FW(qaf.sb[2] , 0xF0000000); /* Functions 0x40..0x5F */
STORE_FW(qaf.sb[3] , 0x00000000); /* Functions 0x60..0x7F */
ARCH_DEP(vstorec) (&qaf, sizeof(qaf)-1, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
#endif /*defined(FEATURE_TOD_CLOCK_STEERING)*/
#if !defined(_GEN_ARCH)
#if defined(_ARCHMODE2)
#define _GEN_ARCH _ARCHMODE2
#include "clock.c"
#endif
#if defined(_ARCHMODE3)
#undef _GEN_ARCH
#define _GEN_ARCH _ARCHMODE3
#include "clock.c"
#endif
#endif /*!defined(_GEN_ARCH)*/
|