1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
/* des.c - implementation of DES
* http://www.tartarus.org/~simon-anonsvn/viewcvs.cgi/putty/
* modified for use with dyncrypt
*/
// $Id$
/*
* PuTTY is copyright 1997-2005 Simon Tatham.
*
* Portions copyright Robert de Bath, Joris van Rantwijk, Delian
* Delchev, Andreas Schultz, Jeroen Massar, Wez Furlong, Nicolas Barry,
* Justin Bradford, Ben Harris, Malcolm Smith, Ahmad Khalifa, Markus
* Kuhn, and CORE SDI S.A.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE
* FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// $Log$
#include "hstdinc.h"
#if !defined(_HENGINE_DLL_)
#define _HENGINE_DLL_
#endif
#include "hercules.h"
#include "opcode.h" /* For fetch_fw */
#include "des.h"
/*
* Description of DES
* ------------------
*
* Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
* bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
* And S-boxes are indexed by six consecutive bits, not by the outer two
* followed by the middle four.
*
* The DES encryption routine requires a 64-bit input, and a key schedule K
* containing 16 48-bit elements.
*
* First the input is permuted by the initial permutation IP.
* Then the input is split into 32-bit words L and R. (L is the MSW.)
* Next, 16 rounds. In each round:
* (L, R) <- (R, L xor f(R, K[i]))
* Then the pre-output words L and R are swapped.
* Then L and R are glued back together into a 64-bit word. (L is the MSW,
* again, but since we just swapped them, the MSW is the R that came out
* of the last round.)
* The 64-bit output block is permuted by the inverse of IP and returned.
*
* Decryption is identical except that the elements of K are used in the
* opposite order. (This wouldn't work if that word swap didn't happen.)
*
* The function f, used in each round, accepts a 32-bit word R and a
* 48-bit key block K. It produces a 32-bit output.
*
* First R is expanded to 48 bits using the bit-selection function E.
* The resulting 48-bit block is XORed with the key block K to produce
* a 48-bit block X.
* This block X is split into eight groups of 6 bits. Each group of 6
* bits is then looked up in one of the eight S-boxes to convert
* it to 4 bits. These eight groups of 4 bits are glued back
* together to produce a 32-bit preoutput block.
* The preoutput block is permuted using the permutation P and returned.
*
* Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
* the approved input format for the key is a 64-bit word, eight of the
* bits are discarded, so the actual quantity of key used is 56 bits.
*
* First the input key is converted to two 28-bit words C and D using
* the bit-selection function PC1.
* Then 16 rounds of key setup occur. In each round, C and D are each
* rotated left by either 1 or 2 bits (depending on which round), and
* then converted into a key schedule element using the bit-selection
* function PC2.
*
* That's the actual algorithm. Now for the tedious details: all those
* painful permutations and lookup tables.
*
* IP is a 64-to-64 bit permutation. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
* 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
* 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
* 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
*
* E is a 32-to-48 bit selection function. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
* 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
*
* The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
* 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
* The S-boxes are listed below. The first S-box listed is applied to the
* most significant six bits of the block X; the last one is applied to the
* least significant.
*
* 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
* 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
* 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
* 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
*
* 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
* 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
* 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
* 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
*
* 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
* 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
* 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
* 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
*
* 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
* 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
* 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
* 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
*
* 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
* 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
* 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
* 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
*
* 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
* 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
* 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
* 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
*
* 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
* 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
* 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
* 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
*
* 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
* 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
* 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
* 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
*
* P is a 32-to-32 bit permutation. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
* 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
*
* PC1 is a 64-to-56 bit selection function. Its output is in two words,
* C and D. The word C contains the following bits of its input (listed
* in order MSB to LSB of output).
*
* 7 15 23 31 39 47 55 63 6 14 22 30 38 46
* 54 62 5 13 21 29 37 45 53 61 4 12 20 28
*
* And the word D contains these bits.
*
* 1 9 17 25 33 41 49 57 2 10 18 26 34 42
* 50 58 3 11 19 27 35 43 51 59 36 44 52 60
*
* PC2 is a 56-to-48 bit selection function. Its input is in two words,
* C and D. These are treated as one 56-bit word (with C more significant,
* so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
* 0 of the word are bits 27 to 0 of D). The output contains the following
* bits of this 56-bit input word (listed in order MSB to LSB of output).
*
* 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
* 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
*/
/*
* Implementation details
* ----------------------
*
* If you look at the code in this module, you'll find it looks
* nothing _like_ the above algorithm. Here I explain the
* differences...
*
* Key setup has not been heavily optimised here. We are not
* concerned with key agility: we aren't codebreakers. We don't
* mind a little delay (and it really is a little one; it may be a
* factor of five or so slower than it could be but it's still not
* an appreciable length of time) while setting up. The only tweaks
* in the key setup are ones which change the format of the key
* schedule to speed up the actual encryption. I'll describe those
* below.
*
* The first and most obvious optimisation is the S-boxes. Since
* each S-box always targets the same four bits in the final 32-bit
* word, so the output from (for example) S-box 0 must always be
* shifted left 28 bits, we can store the already-shifted outputs
* in the lookup tables. This reduces lookup-and-shift to lookup,
* so the S-box step is now just a question of ORing together eight
* table lookups.
*
* The permutation P is just a bit order change; it's invariant
* with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
* can apply P to every entry of the S-box tables and then we don't
* have to do it in the code of f(). This yields a set of tables
* which might be called SP-boxes.
*
* The bit-selection function E is our next target. Note that E is
* immediately followed by the operation of splitting into 6-bit
* chunks. Examining the 6-bit chunks coming out of E we notice
* they're all contiguous within the word (speaking cyclically -
* the end two wrap round); so we can extract those bit strings
* individually rather than explicitly running E. This would yield
* code such as
*
* y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
* t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
*
* and so on; and the key schedule preparation would have to
* provide each 6-bit chunk separately.
*
* Really we'd like to XOR in the key schedule element before
* looking up bit strings in R. This we can't do, naively, because
* the 6-bit strings we want overlap. But look at the strings:
*
* 3322222222221111111111
* bit 10987654321098765432109876543210
*
* box0 XXXXX X
* box1 XXXXXX
* box2 XXXXXX
* box3 XXXXXX
* box4 XXXXXX
* box5 XXXXXX
* box6 XXXXXX
* box7 X XXXXX
*
* The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
* overlap with each other. Neither do the ones for boxes 1, 3, 5
* and 7. So we could provide the key schedule in the form of two
* words that we can separately XOR into R, and then every S-box
* index is available as a (cyclically) contiguous 6-bit substring
* of one or the other of the results.
*
* The comments in Eric Young's libdes implementation point out
* that two of these bit strings require a rotation (rather than a
* simple shift) to extract. It's unavoidable that at least _one_
* must do; but we can actually run the whole inner algorithm (all
* 16 rounds) rotated one bit to the left, so that what the `real'
* DES description sees as L=0x80000001 we see as L=0x00000003.
* This requires rotating all our SP-box entries one bit to the
* left, and rotating each word of the key schedule elements one to
* the left, and rotating L and R one bit left just after IP and
* one bit right again just before FP. And in each round we convert
* a rotate into a shift, so we've saved a few per cent.
*
* That's about it for the inner loop; the SP-box tables as listed
* below are what I've described here (the original S value,
* shifted to its final place in the input to P, run through P, and
* then rotated one bit left). All that remains is to optimise the
* initial permutation IP.
*
* IP is not an arbitrary permutation. It has the nice property
* that if you take any bit number, write it in binary (6 bits),
* permute those 6 bits and invert some of them, you get the final
* position of that bit. Specifically, the bit whose initial
* position is given (in binary) as fedcba ends up in position
* AcbFED (where a capital letter denotes the inverse of a bit).
*
* We have the 64-bit data in two 32-bit words L and R, where bits
* in L are those with f=1 and bits in R are those with f=0. We
* note that we can do a simple transformation: suppose we exchange
* the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
* the bit fedcba to be in position cedfba - we've `swapped' bits c
* and f in the position of each bit!
*
* Better still, this transformation is easy. In the example above,
* bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
* are 0xF0F0F0F0. So we can do
*
* difference = ((R >> 4) ^ L) & 0x0F0F0F0F
* R ^= (difference << 4)
* L ^= difference
*
* to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
* Also, we can invert the bit at the top just by exchanging L and
* R. So in a few swaps and a few of these bit operations we can
* do:
*
* Initially the position of bit fedcba is fedcba
* Swap L with R to make it Fedcba
* Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
* Perform bitswap(16,0x0000FFFF) to make it ecdFba
* Swap L with R to make it EcdFba
* Perform bitswap( 2,0x33333333) to make it bcdFEa
* Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
* Swap L with R to make it DcbFEa
* Perform bitswap( 1,0x55555555) to make it acbFED
* Swap L with R to make it AcbFED
*
* (In the actual code the four swaps are implicit: R and L are
* simply used the other way round in the first, second and last
* bitswap operations.)
*
* The final permutation is just the inverse of IP, so it can be
* performed by a similar set of operations.
*/
#define rotl(x, c) ( (x << c) | (x >> (32-c)) )
#define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
#define GET_32BIT_MSB_FIRST(_storage) fetch_fw((BYTE*)(_storage))
#define PUT_32BIT_MSB_FIRST(_storage, _value) store_fw(_storage, _value)
static word32 bitsel(word32 * input, const int *bitnums, int size)
{
word32 ret = 0;
while (size--) {
int bitpos = *bitnums++;
ret <<= 1;
if (bitpos >= 0)
ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
}
return ret;
}
static void des_key_setup(word32 key_msw, word32 key_lsw, DESContext * sched)
{
static const int PC1_Cbits[] = {
7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
};
static const int PC1_Dbits[] = {
1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
};
/*
* The bit numbers in the two lists below don't correspond to
* the ones in the above description of PC2, because in the
* above description C and D are concatenated so `bit 28' means
* bit 0 of C. In this implementation we're using the standard
* `bitsel' function above and C is in the second word, so bit
* 0 of C is addressed by writing `32' here.
*/
static const int PC2_0246[] = {
49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
};
static const int PC2_1357[] = {
-1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
-1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
};
static const int leftshifts[] =
{ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
word32 C, D;
word32 buf[2];
int i;
buf[0] = key_lsw;
buf[1] = key_msw;
C = bitsel(buf, PC1_Cbits, 28);
D = bitsel(buf, PC1_Dbits, 28);
for (i = 0; i < 16; i++) {
C = rotl28(C, leftshifts[i]);
D = rotl28(D, leftshifts[i]);
buf[0] = D;
buf[1] = C;
sched->k0246[i] = bitsel(buf, PC2_0246, 32);
sched->k1357[i] = bitsel(buf, PC2_1357, 32);
}
sched->iv0 = sched->iv1 = 0;
}
static const word32 SPboxes[8][64] = {
{0x01010400, 0x00000000, 0x00010000, 0x01010404,
0x01010004, 0x00010404, 0x00000004, 0x00010000,
0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004,
0x00000404, 0x01000400, 0x01000400, 0x00010400,
0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004,
0x00000000, 0x00000404, 0x00010404, 0x01000000,
0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400,
0x01010004, 0x00010000, 0x00010400, 0x01000004,
0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404,
0x01000004, 0x00000404, 0x00010404, 0x01010400,
0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004L},
{0x80108020, 0x80008000, 0x00008000, 0x00108020,
0x00100000, 0x00000020, 0x80100020, 0x80008020,
0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020,
0x00108000, 0x00100020, 0x80008020, 0x00000000,
0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000,
0x00008020, 0x80108000, 0x80100000, 0x00008020,
0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000,
0x80100000, 0x80008000, 0x00000020, 0x80108020,
0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020,
0x00100020, 0x80008020, 0x80000020, 0x00100020,
0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000L},
{0x00000208, 0x08020200, 0x00000000, 0x08020008,
0x08000200, 0x00000000, 0x00020208, 0x08000200,
0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208,
0x08000000, 0x00000008, 0x08020200, 0x00000200,
0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208,
0x00000008, 0x08020208, 0x00000200, 0x08000000,
0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000,
0x00000200, 0x00020008, 0x08020208, 0x08000200,
0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208,
0x00000008, 0x00020208, 0x00020200, 0x08000008,
0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200L},
{0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802080, 0x00800081, 0x00800001, 0x00002001,
0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001,
0x00000001, 0x00002000, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080,
0x00002000, 0x00802080, 0x00802081, 0x00000081,
0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000,
0x00002080, 0x00800080, 0x00800081, 0x00000001,
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000,
0x00800001, 0x00002001, 0x00802080, 0x00800081,
0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080L},
{0x00000100, 0x02080100, 0x02080000, 0x42000100,
0x00080000, 0x00000100, 0x40000000, 0x02080000,
0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000,
0x02000000, 0x40080000, 0x40080000, 0x00000000,
0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000,
0x02080100, 0x02000000, 0x42000000, 0x00080100,
0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100,
0x02000100, 0x40000000, 0x42080000, 0x02080100,
0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100,
0x02080000, 0x00000000, 0x40080000, 0x42000000,
0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100L},
{0x20000010, 0x20400000, 0x00004000, 0x20404010,
0x20400000, 0x00000010, 0x20404010, 0x00400000,
0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010,
0x00000000, 0x00400010, 0x20004010, 0x00004000,
0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000,
0x00004010, 0x00404000, 0x20404000, 0x20000000,
0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010,
0x00400000, 0x20004000, 0x20000000, 0x00004010,
0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010,
0x00000010, 0x00004000, 0x20400000, 0x00404010,
0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010L},
{0x00200000, 0x04200002, 0x04000802, 0x00000000,
0x00000800, 0x04000802, 0x00200802, 0x04200800,
0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802,
0x04000800, 0x00200802, 0x00200002, 0x04000800,
0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802,
0x00200800, 0x00000002, 0x04000000, 0x00200800,
0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002,
0x00200002, 0x04000000, 0x04000800, 0x00200000,
0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000,
0x00200800, 0x00000000, 0x00000002, 0x04200802,
0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002L},
{0x10001040, 0x00001000, 0x00040000, 0x10041040,
0x10000000, 0x10001040, 0x00000040, 0x10000000,
0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040,
0x10040000, 0x10000040, 0x10001000, 0x00001040,
0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040,
0x10000040, 0x10001000, 0x00041040, 0x00040000,
0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040,
0x10001000, 0x00000040, 0x10000040, 0x10040000,
0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040,
0x10040000, 0x10001000, 0x10001040, 0x00000000,
0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000L}
};
#define f(R, K0246, K1357) (\
s0246 = R ^ K0246, \
s1357 = R ^ K1357, \
s0246 = rotl(s0246, 28), \
SPboxes[0] [(s0246 >> 24) & 0x3F] | \
SPboxes[1] [(s1357 >> 24) & 0x3F] | \
SPboxes[2] [(s0246 >> 16) & 0x3F] | \
SPboxes[3] [(s1357 >> 16) & 0x3F] | \
SPboxes[4] [(s0246 >> 8) & 0x3F] | \
SPboxes[5] [(s1357 >> 8) & 0x3F] | \
SPboxes[6] [(s0246 ) & 0x3F] | \
SPboxes[7] [(s1357 ) & 0x3F])
#define bitswap(L, R, n, mask) (\
swap = mask & ( (R >> n) ^ L ), \
R ^= swap << n, \
L ^= swap)
/* Initial permutation */
#define IP(L, R) (\
bitswap(R, L, 4, 0x0F0F0F0F), \
bitswap(R, L, 16, 0x0000FFFF), \
bitswap(L, R, 2, 0x33333333), \
bitswap(L, R, 8, 0x00FF00FF), \
bitswap(R, L, 1, 0x55555555))
/* Final permutation */
#define FP(L, R) (\
bitswap(R, L, 1, 0x55555555), \
bitswap(L, R, 8, 0x00FF00FF), \
bitswap(L, R, 2, 0x33333333), \
bitswap(R, L, 16, 0x0000FFFF), \
bitswap(R, L, 4, 0x0F0F0F0F))
static void des_encipher(word32 * output, word32 L, word32 R,
DESContext * sched)
{
word32 swap, s0246, s1357;
IP(L, R);
L = rotl(L, 1);
R = rotl(R, 1);
L ^= f(R, sched->k0246[0], sched->k1357[0]);
R ^= f(L, sched->k0246[1], sched->k1357[1]);
L ^= f(R, sched->k0246[2], sched->k1357[2]);
R ^= f(L, sched->k0246[3], sched->k1357[3]);
L ^= f(R, sched->k0246[4], sched->k1357[4]);
R ^= f(L, sched->k0246[5], sched->k1357[5]);
L ^= f(R, sched->k0246[6], sched->k1357[6]);
R ^= f(L, sched->k0246[7], sched->k1357[7]);
L ^= f(R, sched->k0246[8], sched->k1357[8]);
R ^= f(L, sched->k0246[9], sched->k1357[9]);
L ^= f(R, sched->k0246[10], sched->k1357[10]);
R ^= f(L, sched->k0246[11], sched->k1357[11]);
L ^= f(R, sched->k0246[12], sched->k1357[12]);
R ^= f(L, sched->k0246[13], sched->k1357[13]);
L ^= f(R, sched->k0246[14], sched->k1357[14]);
R ^= f(L, sched->k0246[15], sched->k1357[15]);
L = rotl(L, 31);
R = rotl(R, 31);
swap = L;
L = R;
R = swap;
FP(L, R);
output[0] = L;
output[1] = R;
}
static void des_decipher(word32 * output, word32 L, word32 R,
DESContext * sched)
{
word32 swap, s0246, s1357;
IP(L, R);
L = rotl(L, 1);
R = rotl(R, 1);
L ^= f(R, sched->k0246[15], sched->k1357[15]);
R ^= f(L, sched->k0246[14], sched->k1357[14]);
L ^= f(R, sched->k0246[13], sched->k1357[13]);
R ^= f(L, sched->k0246[12], sched->k1357[12]);
L ^= f(R, sched->k0246[11], sched->k1357[11]);
R ^= f(L, sched->k0246[10], sched->k1357[10]);
L ^= f(R, sched->k0246[9], sched->k1357[9]);
R ^= f(L, sched->k0246[8], sched->k1357[8]);
L ^= f(R, sched->k0246[7], sched->k1357[7]);
R ^= f(L, sched->k0246[6], sched->k1357[6]);
L ^= f(R, sched->k0246[5], sched->k1357[5]);
R ^= f(L, sched->k0246[4], sched->k1357[4]);
L ^= f(R, sched->k0246[3], sched->k1357[3]);
R ^= f(L, sched->k0246[2], sched->k1357[2]);
L ^= f(R, sched->k0246[1], sched->k1357[1]);
R ^= f(L, sched->k0246[0], sched->k1357[0]);
L = rotl(L, 31);
R = rotl(R, 31);
swap = L;
L = R;
R = swap;
FP(L, R);
output[0] = L;
output[1] = R;
}
/* Functions called by dyncrypt */
void des_set_key(des_context *ctx, CHAR8 key)
{
DESContext *sched = ctx->sched;
word32 kL, kR;
kL = GET_32BIT_MSB_FIRST(key);
kR = GET_32BIT_MSB_FIRST(key+4);
des_key_setup(kL, kR, &sched[0]);
}
void des_encrypt(des_context *ctx, CHAR8 input, CHAR8 output)
{
DESContext *sched = ctx->sched;
word32 out[2], xL, xR;
xL = GET_32BIT_MSB_FIRST(input);
xR = GET_32BIT_MSB_FIRST(input+4);
des_encipher(out, xL, xR, sched);
PUT_32BIT_MSB_FIRST(output, out[0]);
PUT_32BIT_MSB_FIRST(output+4, out[1]);
}
void des_decrypt(des_context *ctx, CHAR8 input, CHAR8 output)
{
DESContext *sched = ctx->sched;
word32 out[2], xL, xR;
xL = GET_32BIT_MSB_FIRST(input);
xR = GET_32BIT_MSB_FIRST(input+4);
des_decipher(out, xL, xR, sched);
PUT_32BIT_MSB_FIRST(output, out[0]);
PUT_32BIT_MSB_FIRST(output+4, out[1]);
}
void des3_set_2keys(des3_context *ctx, CHAR8 k1, CHAR8 k2)
{
DESContext *sched = ctx->sched;
word32 kL, kR;
kL = GET_32BIT_MSB_FIRST(k1);
kR = GET_32BIT_MSB_FIRST(k1+4);
des_key_setup(kL, kR, &sched[0]);
des_key_setup(kL, kR, &sched[2]);
kL = GET_32BIT_MSB_FIRST(k2);
kR = GET_32BIT_MSB_FIRST(k2+4);
des_key_setup(kL, kR, &sched[1]);
}
void des3_set_3keys(des3_context *ctx, CHAR8 k1, CHAR8 k2, CHAR8 k3)
{
DESContext *sched = ctx->sched;
word32 kL, kR;
kL = GET_32BIT_MSB_FIRST(k1);
kR = GET_32BIT_MSB_FIRST(k1+4);
des_key_setup(kL, kR, &sched[0]);
kL = GET_32BIT_MSB_FIRST(k2);
kR = GET_32BIT_MSB_FIRST(k2+4);
des_key_setup(kL, kR, &sched[1]);
kL = GET_32BIT_MSB_FIRST(k3);
kR = GET_32BIT_MSB_FIRST(k3+4);
des_key_setup(kL, kR, &sched[2]);
}
void des3_encrypt(des3_context *ctx, CHAR8 input, CHAR8 output)
{
DESContext *sched = ctx->sched;
word32 out[2], xL, xR;
xL = GET_32BIT_MSB_FIRST(input);
xR = GET_32BIT_MSB_FIRST(input+4);
des_encipher(out, xL, xR, sched);
xL = out[0]; xR = out[1];
des_decipher(out, xL, xR, sched+1);
xL = out[0]; xR = out[1];
des_encipher(out, xL, xR, sched+2);
PUT_32BIT_MSB_FIRST(output, out[0]);
PUT_32BIT_MSB_FIRST(output+4, out[1]);
}
void des3_decrypt(des3_context *ctx, CHAR8 input, CHAR8 output)
{
DESContext *sched = ctx->sched;
word32 out[2], xL, xR;
xL = GET_32BIT_MSB_FIRST(input);
xR = GET_32BIT_MSB_FIRST(input+4);
des_decipher(out, xL, xR, sched+2);
xL = out[0]; xR = out[1];
des_encipher(out, xL, xR, sched+1);
xL = out[0]; xR = out[1];
des_decipher(out, xL, xR, sched);
PUT_32BIT_MSB_FIRST(output, out[0]);
PUT_32BIT_MSB_FIRST(output+4, out[1]);
}
|