1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
/* THIS FILE HAS BEEN MODIFIED FOR USE WITH THE HERCULES PROJECT */
/*============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*----------------------------------------------------------------------------
| Underflow tininess-detection mode, statically initialized to default value.
| (The declaration in `softfloat.h' must match the `int8' type here.)
*----------------------------------------------------------------------------*/
int8 float_detect_tininess = float_tininess_before_rounding;
/*----------------------------------------------------------------------------
| Sets the floating-point rounding mode.
*----------------------------------------------------------------------------*/
void float_set_rounding_mode( int8 mode )
{
float_rounding_mode = mode;
}
/*----------------------------------------------------------------------------
| Gets the floating-point exception flags.
*----------------------------------------------------------------------------*/
int8 float_get_exception_flags()
{
return float_exception_flags;
}
/*----------------------------------------------------------------------------
| Clears the floating-point exception flags.
*----------------------------------------------------------------------------*/
void float_clear_exception_flags()
{
float_exception_flags = 0;
}
/*----------------------------------------------------------------------------
| Raises the exceptions specified by `flags'. Floating-point traps can be
| defined here if desired. It is currently not possible for such a trap to
| substitute a result value. If traps are not implemented, this routine
| should be simply `float_exception_flags |= flags;'.
*----------------------------------------------------------------------------*/
void float_raise( int8 flags )
{
float_exception_flags |= flags;
}
/*----------------------------------------------------------------------------
| Internal canonical NaN format.
*----------------------------------------------------------------------------*/
typedef struct {
flag sign;
bits64 high, low;
} commonNaNT;
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is infinity;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_inf( float32 a )
{
return ( 0xFF000000 == (bits32) ( a<<1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_nan( float32 a )
{
return ( 0xFF000000 < (bits32) ( a<<1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is negative;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_neg( float32 a )
{
return ( a>>31 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_signaling_nan( float32 a )
{
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is subnormal;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_subnormal( float32 a )
{
return ( ( ( a>>23 ) & 0xFF ) == 0 )
&& ( a & 0x007FFFFF );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is zero;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_zero( float32 a )
{
return ( ( a & 0x7FFFFFFF ) == 0);
}
/*----------------------------------------------------------------------------
| Returns the single-precision floating-point value `a' with positive sign.
*----------------------------------------------------------------------------*/
float32 float32_pos( float32 a )
{
return ( a & 0x7FFFFFFF );
}
/*----------------------------------------------------------------------------
| Returns the single-precision floating-point value `a' with negative sign.
*----------------------------------------------------------------------------*/
float32 float32_neg( float32 a )
{
return ( a | 0x80000000 );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point
| signaling NaN `a' to a quiet NaN.
*----------------------------------------------------------------------------*/
float32 float32_snan_to_qnan( float32 a )
{
return ( a | 0x00400000 );
}
/*----------------------------------------------------------------------------
| Builds a single-precision floating-point value.
*----------------------------------------------------------------------------*/
float32 float32_build( int sign, int exp, bits32 fract )
{
return ( (bits32) ( sign ? 0x80000000 : 0 ) )
| ( (bits32) ( exp & 0xFF ) << 23 )
| ( fract & 0x007FFFFF );
}
/*----------------------------------------------------------------------------
| Returns the exponent of single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
bits16 float32_exp( float32 a )
{
return (( a>>23 ) & 0xFF );
}
/*----------------------------------------------------------------------------
| Returns the fraction of single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
bits32 float32_fract( float32 a )
{
return ( a & 0x007FFFFF );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float32ToCommonNaN( float32 a )
{
commonNaNT z;
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>31;
z.low = 0;
z.high = ( (bits64) a )<<41;
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the single-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float32 commonNaNToFloat32( commonNaNT a )
{
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
}
/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float32 propagateFloat32NaN( float32 a, float32 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float32_is_nan( a );
aIsSignalingNaN = float32_is_signaling_nan( a );
bIsNaN = float32_is_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b );
a |= 0x00400000;
b |= 0x00400000;
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is infinity;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_inf( float64 a )
{
return ( LIT64( 0xFFE0000000000000 ) == (bits64) ( a<<1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_nan( float64 a )
{
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is negative;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_neg( float64 a )
{
return ( a>>63 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_signaling_nan( float64 a )
{
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is subnormal;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_subnormal( float64 a )
{
return ( ( ( a>>52 ) & 0x7FF ) == 0 )
&& ( a & LIT64( 0x000FFFFFFFFFFFFF ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is zero;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_zero( float64 a )
{
return ( ( a & LIT64( 0x7FFFFFFFFFFFFFFF ) ) == 0);
}
/*----------------------------------------------------------------------------
| Returns the double-precision floating-point value `a' with positive sign.
*----------------------------------------------------------------------------*/
float64 float64_pos( float64 a )
{
return ( a & LIT64( 0x7FFFFFFFFFFFFFFF ) );
}
/*----------------------------------------------------------------------------
| Returns the double-precision floating-point value `a' with negative sign.
*----------------------------------------------------------------------------*/
float64 float64_neg( float64 a )
{
return ( a | LIT64( 0x8000000000000000 ) );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point
| signaling NaN `a' to a quiet NaN.
*----------------------------------------------------------------------------*/
float64 float64_snan_to_qnan( float64 a )
{
return ( a | LIT64( 0x0008000000000000 ) );
}
/*----------------------------------------------------------------------------
| Builds a double-precision floating-point value.
*----------------------------------------------------------------------------*/
float64 float64_build( int sign, int exp, bits64 fract )
{
return ( (bits64) ( sign ? LIT64( 0x8000000000000000 ) : 0 )
| ( (bits64) ( exp & 0x7FF ) << 52 )
| ( fract & LIT64( 0x000FFFFFFFFFFFFF ) ) );
}
/*----------------------------------------------------------------------------
| Returns the exponent of double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
bits16 float64_exp( float64 a )
{
return (( a>>52 ) & 0x7FF );
}
/*----------------------------------------------------------------------------
| Returns the fraction of double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
bits64 float64_fract( float64 a )
{
return ( a & LIT64( 0x000FFFFFFFFFFFFF ) );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float64ToCommonNaN( float64 a )
{
commonNaNT z;
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>63;
z.low = 0;
z.high = a<<12;
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the double-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float64 commonNaNToFloat64( commonNaNT a )
{
return
( ( (bits64) a.sign )<<63 )
| LIT64( 0x7FF8000000000000 )
| ( a.high>>12 );
}
/*----------------------------------------------------------------------------
| Takes two double-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float64 propagateFloat64NaN( float64 a, float64 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float64_is_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
a |= LIT64( 0x0008000000000000 );
b |= LIT64( 0x0008000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#ifdef FLOATX80
/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN. The
| `high' and `low' values hold the most- and least-significant bits,
| respectively.
*----------------------------------------------------------------------------*/
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag floatx80_is_nan( floatx80 a )
{
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag floatx80_is_signaling_nan( floatx80 a )
{
bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( a.low == aLow );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT floatx80ToCommonNaN( floatx80 a )
{
commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>15;
z.low = 0;
z.high = a.low<<1;
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the extended
| double-precision floating-point format.
*----------------------------------------------------------------------------*/
static floatx80 commonNaNToFloatx80( commonNaNT a )
{
floatx80 z;
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
return z;
}
/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#endif
#ifdef FLOAT128
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is infinity;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_inf( float128 a )
{
return ( a.low == 0
&& ( (bits64) ( a.high<<1 ) == LIT64( 0xFFFE000000000000 ) ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_nan( float128 a )
{
return
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is negative;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_neg( float128 a )
{
return ( a.high>>63 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_signaling_nan( float128 a )
{
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is subnormal;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_subnormal( float128 a )
{
return ( ( ( a.high>>48 ) & 0x7FFF ) == 0 )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is zero;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_zero( float128 a )
{
return ( a.low == 0 && ( a.high & LIT64( 0x7FFFFFFFFFFFFFFF ) ) == 0 );
}
/*----------------------------------------------------------------------------
| Returns the quadruple-precision floating-point value `a' with positive sign.
*----------------------------------------------------------------------------*/
float128 float128_pos( float128 a )
{
float128 result;
result.high = ( a.high & LIT64( 0x7FFFFFFFFFFFFFFF ) );
result.low = a.low;
return result;
}
/*----------------------------------------------------------------------------
| Returns the quadruple-precision floating-point value `a' with negative sign.
*----------------------------------------------------------------------------*/
float128 float128_neg( float128 a )
{
float128 result;
result.high = ( a.high | LIT64( 0x8000000000000000 ) );
result.low = a.low;
return result;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| signaling NaN `a' to a quiet NaN.
*----------------------------------------------------------------------------*/
float128 float128_snan_to_qnan( float128 a )
{
float128 result;
result.high = ( a.high | LIT64( 0x0000800000000000 ) );
result.low = a.low;
return result;
}
/*----------------------------------------------------------------------------
| Builds a quadruple-precision floating-point value.
*----------------------------------------------------------------------------*/
float128 float128_build( int sign, int exp, bits64 fract_high, bits64 fract_low )
{
float128 result;
result.high = ( (bits64) ( sign ? LIT64( 0x8000000000000000 ) : 0 )
| ( (bits64) ( exp & 0x7FFF ) << 48 )
| ( fract_high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
result.low = fract_low;
return result;
}
/*----------------------------------------------------------------------------
| Returns the exponent of quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
bits16 float128_exp( float128 a )
{
return (( a.high>>48 ) & 0x7FFF );
}
/*----------------------------------------------------------------------------
| Returns the high-order 48 bits of the fraction of quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/
bits64 float128_fract_high( float128 a )
{
return ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) );
}
/*----------------------------------------------------------------------------
| Returns the low-order 64 bits of the fraction of quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/
bits64 float128_fract_low( float128 a )
{
return ( a.low );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float128ToCommonNaN( float128 a )
{
commonNaNT z;
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>63;
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the quadruple-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float128 commonNaNToFloat128( commonNaNT a )
{
float128 z;
shift128Right( a.high, a.low, 16, &z.high, &z.low );
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
return z;
}
/*----------------------------------------------------------------------------
| Takes two quadruple-precision floating-point values `a' and `b', one of
| which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float128 propagateFloat128NaN( float128 a, float128 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float128_is_nan( a );
aIsSignalingNaN = float128_is_signaling_nan( a );
bIsNaN = float128_is_nan( b );
bIsSignalingNaN = float128_is_signaling_nan( b );
a.high |= LIT64( 0x0000800000000000 );
b.high |= LIT64( 0x0000800000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#endif
|