File: softfloat-specialize

package info (click to toggle)
hercules 3.13-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,392 kB
  • sloc: ansic: 175,124; sh: 8,792; makefile: 760; perl: 149
file content (825 lines) | stat: -rw-r--r-- 26,736 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
/* THIS FILE HAS BEEN MODIFIED FOR USE WITH THE HERCULES PROJECT */
/*============================================================================

This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.

=============================================================================*/

/*----------------------------------------------------------------------------
| Underflow tininess-detection mode, statically initialized to default value.
| (The declaration in `softfloat.h' must match the `int8' type here.)
*----------------------------------------------------------------------------*/
int8 float_detect_tininess = float_tininess_before_rounding;

/*----------------------------------------------------------------------------
| Sets the floating-point rounding mode.
*----------------------------------------------------------------------------*/

void float_set_rounding_mode( int8 mode )
{

    float_rounding_mode = mode;

}

/*----------------------------------------------------------------------------
| Gets the floating-point exception flags.
*----------------------------------------------------------------------------*/

int8 float_get_exception_flags()
{

    return float_exception_flags;

}

/*----------------------------------------------------------------------------
| Clears the floating-point exception flags.
*----------------------------------------------------------------------------*/

void float_clear_exception_flags()
{

    float_exception_flags = 0;

}

/*----------------------------------------------------------------------------
| Raises the exceptions specified by `flags'.  Floating-point traps can be
| defined here if desired.  It is currently not possible for such a trap to
| substitute a result value.  If traps are not implemented, this routine
| should be simply `float_exception_flags |= flags;'.
*----------------------------------------------------------------------------*/

void float_raise( int8 flags )
{

    float_exception_flags |= flags;

}

/*----------------------------------------------------------------------------
| Internal canonical NaN format.
*----------------------------------------------------------------------------*/
typedef struct {
    flag sign;
    bits64 high, low;
} commonNaNT;

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is infinity;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float32_is_inf( float32 a )
{

    return ( 0xFF000000 == (bits32) ( a<<1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float32_is_nan( float32 a )
{

    return ( 0xFF000000 < (bits32) ( a<<1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is negative;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float32_is_neg( float32 a )
{

    return ( a>>31 );

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float32_is_signaling_nan( float32 a )
{

    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is subnormal;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float32_is_subnormal( float32 a )
{

    return ( ( ( a>>23 ) & 0xFF ) == 0 )
        && ( a & 0x007FFFFF );

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is zero;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float32_is_zero( float32 a )
{

    return ( ( a & 0x7FFFFFFF ) == 0);

}

/*----------------------------------------------------------------------------
| Returns the single-precision floating-point value `a' with positive sign.
*----------------------------------------------------------------------------*/

float32 float32_pos( float32 a )
{

    return ( a & 0x7FFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the single-precision floating-point value `a' with negative sign.
*----------------------------------------------------------------------------*/

float32 float32_neg( float32 a )
{

    return ( a | 0x80000000 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point
| signaling NaN `a' to a quiet NaN.
*----------------------------------------------------------------------------*/
float32 float32_snan_to_qnan( float32 a )
{

    return ( a | 0x00400000 );

}

/*----------------------------------------------------------------------------
| Builds a single-precision floating-point value.                   
*----------------------------------------------------------------------------*/

float32 float32_build( int sign, int exp, bits32 fract )
{

    return ( (bits32) ( sign ? 0x80000000 : 0 ) )
        | ( (bits32) ( exp & 0xFF ) << 23 )  
        | ( fract & 0x007FFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent of single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

bits16 float32_exp( float32 a )
{

    return (( a>>23 ) & 0xFF );

}

/*----------------------------------------------------------------------------
| Returns the fraction of single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

bits32 float32_fract( float32 a )
{

    return ( a & 0x007FFFFF );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point NaN
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT float32ToCommonNaN( float32 a )
{
    commonNaNT z;

    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    z.sign = a>>31;
    z.low = 0;
    z.high = ( (bits64) a )<<41;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the single-
| precision floating-point format.
*----------------------------------------------------------------------------*/

static float32 commonNaNToFloat32( commonNaNT a )
{

    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );

}

/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static float32 propagateFloat32NaN( float32 a, float32 b )
{
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;

    aIsNaN = float32_is_nan( a );
    aIsSignalingNaN = float32_is_signaling_nan( a );
    bIsNaN = float32_is_nan( b );
    bIsSignalingNaN = float32_is_signaling_nan( b );
    a |= 0x00400000;
    b |= 0x00400000;
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    if ( aIsNaN ) {
        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    }
    else {
        return b;
    }

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is infinity;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float64_is_inf( float64 a )
{

    return ( LIT64( 0xFFE0000000000000 ) == (bits64) ( a<<1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float64_is_nan( float64 a )
{

    return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is negative;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float64_is_neg( float64 a )
{

    return ( a>>63 );

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float64_is_signaling_nan( float64 a )
{

    return
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is subnormal;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float64_is_subnormal( float64 a )
{

    return ( ( ( a>>52 ) & 0x7FF ) == 0 )
        && ( a & LIT64( 0x000FFFFFFFFFFFFF ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is zero;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float64_is_zero( float64 a )
{

    return ( ( a & LIT64( 0x7FFFFFFFFFFFFFFF ) ) == 0);

}

/*----------------------------------------------------------------------------
| Returns the double-precision floating-point value `a' with positive sign.
*----------------------------------------------------------------------------*/

float64 float64_pos( float64 a )
{

    return ( a & LIT64( 0x7FFFFFFFFFFFFFFF ) );

}

/*----------------------------------------------------------------------------
| Returns the double-precision floating-point value `a' with negative sign.
*----------------------------------------------------------------------------*/

float64 float64_neg( float64 a )
{

    return ( a | LIT64( 0x8000000000000000 ) );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point
| signaling NaN `a' to a quiet NaN.
*----------------------------------------------------------------------------*/
float64 float64_snan_to_qnan( float64 a )
{

    return ( a | LIT64( 0x0008000000000000 ) );

}

/*----------------------------------------------------------------------------
| Builds a double-precision floating-point value.                   
*----------------------------------------------------------------------------*/

float64 float64_build( int sign, int exp, bits64 fract )
{

    return ( (bits64) ( sign ? LIT64( 0x8000000000000000 ) : 0 )
        | ( (bits64) ( exp & 0x7FF ) << 52 )  
        | ( fract & LIT64( 0x000FFFFFFFFFFFFF ) ) );

}

/*----------------------------------------------------------------------------
| Returns the exponent of double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

bits16 float64_exp( float64 a )
{

    return (( a>>52 ) & 0x7FF );

}

/*----------------------------------------------------------------------------
| Returns the fraction of double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

bits64 float64_fract( float64 a )
{

    return ( a & LIT64( 0x000FFFFFFFFFFFFF ) );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point NaN
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT float64ToCommonNaN( float64 a )
{
    commonNaNT z;

    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    z.sign = a>>63;
    z.low = 0;
    z.high = a<<12;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the double-
| precision floating-point format.
*----------------------------------------------------------------------------*/

static float64 commonNaNToFloat64( commonNaNT a )
{

    return
          ( ( (bits64) a.sign )<<63 )
        | LIT64( 0x7FF8000000000000 )
        | ( a.high>>12 );

}

/*----------------------------------------------------------------------------
| Takes two double-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static float64 propagateFloat64NaN( float64 a, float64 b )
{
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;

    aIsNaN = float64_is_nan( a );
    aIsSignalingNaN = float64_is_signaling_nan( a );
    bIsNaN = float64_is_nan( b );
    bIsSignalingNaN = float64_is_signaling_nan( b );
    a |= LIT64( 0x0008000000000000 );
    b |= LIT64( 0x0008000000000000 );
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    if ( aIsNaN ) {
        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    }
    else {
        return b;
    }

}

#ifdef FLOATX80

/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN.  The
| `high' and `low' values hold the most- and least-significant bits,
| respectively.
*----------------------------------------------------------------------------*/
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

flag floatx80_is_nan( floatx80 a )
{

    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

flag floatx80_is_signaling_nan( floatx80 a )
{
    bits64 aLow;

    aLow = a.low & ~ LIT64( 0x4000000000000000 );
    return
           ( ( a.high & 0x7FFF ) == 0x7FFF )
        && (bits64) ( aLow<<1 )
        && ( a.low == aLow );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT floatx80ToCommonNaN( floatx80 a )
{
    commonNaNT z;

    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    z.sign = a.high>>15;
    z.low = 0;
    z.high = a.low<<1;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the extended
| double-precision floating-point format.
*----------------------------------------------------------------------------*/

static floatx80 commonNaNToFloatx80( commonNaNT a )
{
    floatx80 z;

    z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    return z;

}

/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;

    aIsNaN = floatx80_is_nan( a );
    aIsSignalingNaN = floatx80_is_signaling_nan( a );
    bIsNaN = floatx80_is_nan( b );
    bIsSignalingNaN = floatx80_is_signaling_nan( b );
    a.low |= LIT64( 0xC000000000000000 );
    b.low |= LIT64( 0xC000000000000000 );
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    if ( aIsNaN ) {
        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    }
    else {
        return b;
    }

}

#endif

#ifdef FLOAT128

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is infinity;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float128_is_inf( float128 a )
{

    return ( a.low == 0
        && ( (bits64) ( a.high<<1 ) == LIT64( 0xFFFE000000000000 ) ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float128_is_nan( float128 a )
{

    return
           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is negative;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float128_is_neg( float128 a )
{

    return ( a.high>>63 );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float128_is_signaling_nan( float128 a )
{

    return
           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is subnormal;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float128_is_subnormal( float128 a )
{

    return ( ( ( a.high>>48 ) & 0x7FFF ) == 0 )
        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is zero;
| otherwise returns 0.
*----------------------------------------------------------------------------*/

flag float128_is_zero( float128 a )
{

    return ( a.low == 0 && ( a.high & LIT64( 0x7FFFFFFFFFFFFFFF ) ) == 0 );

}

/*----------------------------------------------------------------------------
| Returns the quadruple-precision floating-point value `a' with positive sign.
*----------------------------------------------------------------------------*/

float128 float128_pos( float128 a )
{
    float128 result;

    result.high = ( a.high & LIT64( 0x7FFFFFFFFFFFFFFF ) );
    result.low = a.low;
    return result;

}

/*----------------------------------------------------------------------------
| Returns the quadruple-precision floating-point value `a' with negative sign.
*----------------------------------------------------------------------------*/

float128 float128_neg( float128 a )
{
    float128 result;                                      

    result.high = ( a.high | LIT64( 0x8000000000000000 ) );
    result.low = a.low;
    return result;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| signaling NaN `a' to a quiet NaN.
*----------------------------------------------------------------------------*/
float128 float128_snan_to_qnan( float128 a )
{
    float128 result;                                      

    result.high = ( a.high | LIT64( 0x0000800000000000 ) );
    result.low = a.low;
    return result;

}

/*----------------------------------------------------------------------------
| Builds a quadruple-precision floating-point value.
*----------------------------------------------------------------------------*/

float128 float128_build( int sign, int exp, bits64 fract_high, bits64 fract_low )
{
    float128 result;                                      

    result.high = ( (bits64) ( sign ? LIT64( 0x8000000000000000 ) : 0 )
        | ( (bits64) ( exp & 0x7FFF ) << 48 )  
        | ( fract_high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
    result.low = fract_low;
    return result;

}

/*----------------------------------------------------------------------------
| Returns the exponent of quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

bits16 float128_exp( float128 a )
{

    return (( a.high>>48 ) & 0x7FFF );

}

/*----------------------------------------------------------------------------
| Returns the high-order 48 bits of the fraction of quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

bits64 float128_fract_high( float128 a )
{

    return ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) );

}

/*----------------------------------------------------------------------------
| Returns the low-order 64 bits of the fraction of quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

bits64 float128_fract_low( float128 a )
{

    return ( a.low );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point NaN
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT float128ToCommonNaN( float128 a )
{
    commonNaNT z;

    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    z.sign = a.high>>63;
    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the quadruple-
| precision floating-point format.
*----------------------------------------------------------------------------*/

static float128 commonNaNToFloat128( commonNaNT a )
{
    float128 z;

    shift128Right( a.high, a.low, 16, &z.high, &z.low );
    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
    return z;

}

/*----------------------------------------------------------------------------
| Takes two quadruple-precision floating-point values `a' and `b', one of
| which is a NaN, and returns the appropriate NaN result.  If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static float128 propagateFloat128NaN( float128 a, float128 b )
{
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;

    aIsNaN = float128_is_nan( a );
    aIsSignalingNaN = float128_is_signaling_nan( a );
    bIsNaN = float128_is_nan( b );
    bIsSignalingNaN = float128_is_signaling_nan( b );
    a.high |= LIT64( 0x0000800000000000 );
    b.high |= LIT64( 0x0000800000000000 );
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    if ( aIsNaN ) {
        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    }
    else {
        return b;
    }

}

#endif