1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
=head1 NAME
heri-eval - evaluate classification algorithm
=head1 SYNOPSIS
B<heri-eval> [OPTIONS] I<dataset> [-- SVM_TRAIN_OPTIONS]
=head1 DESCRIPTION
B<heri-eval> runs training algorithm on I<dataset> and then
evaluate it using testing set, specified by option I<-e>.
If option I<-n> was applied,
cross-validation is used for evaluation, training and testing on different folds
are run in parallel, thus utilizing available CPUs. If I<-r> is used, the
dataset is splitted into training and testing datasets randomly with
the specified ratio, and then holdout is run.
=head1 OPTIONS
=over 6
=item B<-h, --help>
Display help information.
=item B<-f>
Enable output of per-fold statistics. See B<-M>I<f>.
=item B<-n> I<N>
Enable T*I<N>-fold cross-validation mode and set the number of folds to I<N>.
=item B<-r> I<ratio>
Split the dataset into training and testing parts with the specified ratio
of their sizes (in percents).
=item B<-t> I<T>
Enable I<T>*N-fold cross-validation mode and set the number of runs to I<T>
which 1 by default.
=item B<-e> I<testing_dataset>
Enable hold-out mode and set the testing dataset.
=item B<-T> I<threshold>
Set the minimum threshold for making a classification decision. If this flag is applied,
micro-average precision, recall, and F1 are calculated instead of accuracy.
=item B<-o> I<filename>
Save predictions from testing sets
to the specified file.
Format: outcome_class prediction_class [score]
=item B<-O> I<filename>
Save incorrectly classified objects
to the specified file.
Format: #object_number: outcome_class prediction_class [score])
=item B<-m> I<filename>
Save confusion matrix to the specified file.
Format: frequency : outcome_class prediction_class
=item B<-p> I<opts>
Pass the specified I<opts> to B<heri-stat(1)>.
=item B<-s> I<opts>
Pass the specified I<opts> to B<heri-split(1)>.
=item B<-M> I<chars>
Sets the output mode where chars are:
t -- output total statistics,
f -- output per-fold statistics,
c -- output cross-fold statistics.
The default is "-M tc".
=item B<-S> I<seed>
Pass the specified I<seed> to B<heri-split(1)>.
=item B<-K>
Keep temporary directory after exiting.
=item B<-D>
Turn on the debugging mode, implies -K.
=back
=head1 EXAMPLES
=over 1
heri-eval -e testing_set.libsvm training_set.libsvm -- -s 0 -t 0
export SVM_TRAIN_CMD='liblinear-train'
export SVM_PREDICT_CMD='liblinear-predict'
heri-eval -p '-mr' -n 5 training_set.libsvm -- -s 4 -q
heri-eval -p '-mr' -n 5 training_set.libsvm -- -s 4 -q
export SVM_TRAIN_CMD='scikit_rf-train --estimators=400'
export SVM_PREDICT_CMD='scikit_rf-predict'
heri-eval -p '-c' -Mt -t 50 -r 70 dataset.libsvm
=back
=head1 ENVIRONMENT
=over 6
=item I<SVM_TRAIN_CMD>
Training utility, e.g., liblinear-train
(the default is svm-train).
=item I<SVM_PREDICT_CMD>
Predicting utility, e.g., liblinear-predict
(the default is svm-predict).
=item I<SVM_HERI_STAT_CMD>
Utility for calculating statistics (the default is B<heri-stat(1)>).
=item I<SVM_HERI_STAT_ADDONS_CMD>
Utility for calculating additional statistics (the default is B<heri-stat-addons(1)>).
=item I<SVM_HERI_SPLIT_CMD>
Utility for splitting the dataset (the default is B<heri-split(1)>).
=item I<TMPDIR>
Temporary directory (the default is /tmp).
=back
=head1 HOME
L<http://github.com/cheusov/herisvm>
=head1 SEE ALSO
L<heri-split(1)>
L<heri-stat(1)>
|