File: heri-stat

package info (click to toggle)
herisvm 0.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 328 kB
  • sloc: sh: 1,471; ruby: 615; makefile: 28
file content (377 lines) | stat: -rwxr-xr-x 10,246 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env ruby

# Copyright (c) 2015 Alexandra Figlovskaya <fglval@gmail.com>
# Copyright (c) 2015-2019 Aleksey Cheusov <vle@gmx.net>
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

require 'optparse'
require 'set'

@options = {}
@err = nil
@unspecified_class="__strelka_i_raketa__"

def print_pretty(class_name, p, p_comment, r, r_comment, f1, f1_comment)
  puts "%13s P, R, F1:  %-6.4g %-13s,  %-6.4g %-13s,  %-6.4g" \
    % [class_name, p, p_comment, r, r_comment, f1, f1_comment]
end

def print_accuracy_pretty(a, a_comment)
  puts "Accuracy              :  %-6.4g %-13s" % [a, a_comment]
end

def print_raw(class_name, p, p_comment, r, r_comment, f1, f1_comment)
  puts "#{class_name}\tP\t#{p}\t#{p_comment.strip}"
  puts "#{class_name}\tR\t#{r}\t#{r_comment.strip}"
  puts "#{class_name}\tF1\t#{f1}\t#{f1_comment.strip}"
end

def print_accuracy_raw(a, a_comment)
  puts "\tA\t#{a}\t#{a_comment.strip}"
end

def print_stat(class_name, p, p_comment, r, r_comment, f1, f1_comment)
  if @options[:raw]
    print_raw(class_name, p, p_comment, r, r_comment, f1, f1_comment)
  else
    print_pretty(class_name, p, p_comment, r, r_comment, f1, f1_comment)
  end
end

def print_accuracy(a, a_comment)
  if @options[:raw]
    print_accuracy_raw(a, a_comment)
  else
    print_accuracy_pretty(a, a_comment)
  end
end

def pretty_div(a, b)
  "%5s/%-5s" % [a, b]
end

def normalize_tag(tag)
  tag = tag.to_s.sub(/^[+]/, "") # +1 => 1
  if tag =~ /^-?[0-9]+[.][0-9]+$/
    tag = tag.sub(/[.]0+$/, "") # -1.0000 => -1
  end
  return tag
end

def split_into_3(line, fn)
  line = line.gsub(/\s+/, " ").strip()

  ret = ["", "", Float::MAX]

  tokens = line.split(/ /)
  case tokens.size
  when 2
    ret = [normalize_tag(tokens[0]), normalize_tag(tokens[1]), Float::MAX]
  when 3
    ret = [normalize_tag(tokens[0]), normalize_tag(tokens[1]), tokens[2].to_f]
  else
    ret = [normalize_tag(tokens[0]), normalize_tag(tokens[1]), Float::MAX]
    line.sub!(/^fake ?/, "")
    STDERR.puts("Bad line '#{line}' in file '#{fn}'")
    @err = 1
  end

  if ret [2] < @options[:treshold]
    ret [1] = @unspecified_class
  end

  return ret
end

def mse(outcomes, predictions)
  sum = 0.0
  outcomes.each_index do |idx|
    sum += (outcomes[idx] - predictions[idx]) ** 2
  end
  return sum / outcomes.length.to_f
end

def rmse(outcomes, predictions)
  return Math.sqrt(mse(outcomes, predictions))
end

def mae(outcomes, predictions)
  sum = 0.0
  outcomes.each_index do |idx|
    sum += (outcomes[idx] - predictions[idx]).abs
  end
  return sum / outcomes.length.to_f
end

@options[:excluded] = Set.new()

OptionParser.new do |opts|
  opts.banner = <<EOF
heri-stat calculates precision (P), recall (R), F1, accuracy (A),
  mean absolute error (MAE), mean squared error (MSE) or
  root mean squared error (RMSE) for given outcomes and predictions.
  Unless -g is specified, predictions of classification is expected on input.
Usage:
    heri-stat -h
    heri-stat    [-g mode] [-R] [OPTIONS] <outcomes> <predictions>
    heri-stat -1 [-g mode] [-R] [OPTIONS] [files...]
OPTIONS:
EOF

  opts.on('-h', '--help','display this message and exit') do
    puts opts
    exit 0
  end

  @options[:raw] = false
  opts.on('-R', '--raw','raw tab-separated output') do
    @options[:raw] = true
  end

  @options[:micro_avg] = false
  opts.on('-m', '--micro-avg','disable micro averaged P/R/F1 output') do
    @options[:micro_avg] = true
  end

  @options[:macro_avg] = false
  opts.on('-r', '--macro-avg','disable macro averaged P/R/F1 output') do
    @options[:macro_avg] = true
  end

  @options[:statistics] = false
  opts.on('-c', '--per-class','disable output of per-class statistics') do
    @options[:statistics] = true
  end

  @options[:accuracy] = false
  opts.on('-a', '--accuracy','disable output of accuracy') do
    @options[:accuracy] = true
  end

  @options[:single] = false
  opts.on('-1', '--single','obtain both outcomes and
predicted classes from single source. If this option is specified,
the first token on input represents the outcome class
and second one -- predicted class') do
    @options[:single] = true
  end

  @options[:unclassified] = false
  opts.on("-u", "--unclassified=UNCLASSIFIED", 'set the label for "unclassified" object') do |u|
    @options[:unclassified] = u.to_s
  end

  @options[:treshold] = -Float::MAX
  opts.on("-t", "--treshold=TRESHOLD", 'Minimal treshold for score') do |u|
    @options[:treshold] = u.to_f
    @options[:unclassified] = @unspecified_class
  end

  @options[:excluded_labels] = false
  opts.on("-x", "--exclude=LABELS", 'exclude the specified labels from statistics') do |x|
    @options[:excluded] = Set.new(x.split(","))
  end

  opts.on("-g", "--regression=mode", 'Calculate MAE, MSE or RMSE') do |g|
    @options[:regression] = true

    @options[:mse]  = g.include?("s")
    @options[:rmse] = g.include?("r")
    @options[:mae]  = g.include?("a")

    if /[^sra]/ =~ g
      STDERR.puts "Invalid mode '#{g}' for option -g"
      exit 1
    end
  end

  opts.separator " "
end.parse!

if @options[:unclassified]
  @options[:accuracy]=true
else
  @options[:micro_avg]=true
end

def get_up_to_two_tokens(s)
  s = s.strip
  s = s.sub(/^([^\s]+\s([^\s]+))\s.*$/, "\\1")
  return s
end

def get_up_to_three_tokens(s)
  s = s.strip
  s = s.sub(/^([^\s]+\s([^\s]+)\s([^\s]+))\s.*$/, "\\1")
  return s
end

if @options[:single]
  outcome_tags = []
  prediction_tags = []
  while line = gets do
    gt, rt, fake = split_into_3(get_up_to_three_tokens(line), "")
    outcome_tags << gt
    prediction_tags << rt
  end
else
  outcome_tags = IO.read(ARGV[0]).split("\n").map! do |x| get_up_to_two_tokens(x) end
  prediction_tags = IO.read(ARGV[1]).split("\n").map! do |x| get_up_to_two_tokens(x) end
  if outcome_tags.length != prediction_tags.length
    STDERR.puts("Dataset and prediction files should contain the same amount of lines");
    exit 1
  end

  outcome_tags.each_index do |i|
    fake1, outcome_tags[i], fake = split_into_3("fake " + outcome_tags[i], ARGV[0])
    fake1, prediction_tags[i], fake = split_into_3("fake " + prediction_tags[i], ARGV[1])
  end
end

exit 1 if @err

if @options[:regression]
  outcome_tags.map! {|x| x.to_f}
  prediction_tags.map! {|x| x.to_f}

  mae_value = mae(outcome_tags, prediction_tags)
  mse_value = mse(outcome_tags, prediction_tags)
  rmse_value = rmse(outcome_tags, prediction_tags)

  if @options[:mse]
    if @options[:raw]
      puts "\tMSE\t#{mse_value}"
    else
      puts "MSE: #{mse_value}"
    end
  end
  if @options[:rmse]
    if @options[:raw]
      puts "\tRMSE\t#{rmse_value}"
    else
      puts "RMSE: #{rmse_value}"
    end
  end
  if @options[:mae]
    if @options[:raw]
      puts "\tMAE\t#{mae_value}"
    else
      puts "MAE: #{mae_value}"
    end
  end

  exit 0
end

tag2outcome_cnt = Hash.new(0)
tag2prediction_cnt = Hash.new(0)
tag2TP_cnt = Hash.new(0)
all_precision = 0
all_recall = 0

outcome_tags.each_index do |i|
  gt = outcome_tags[i]
  rt = prediction_tags[i]

  # make sure hash cell exists
  tag2TP_cnt[gt] += 0
  tag2prediction_cnt[gt] += 0
  tag2outcome_cnt[gt] += 1 if gt != @options[:unclassified]

  if @options[:excluded].include?(rt)
    next
  end

  if rt != @options[:unclassified]
    tag2prediction_cnt[rt] += 1
    tag2TP_cnt[rt] += (gt == rt ? 1 : 0)
  end
end

@options[:excluded].each do |excluded|
  tag2TP_cnt.delete(excluded)
  tag2prediction_cnt.delete(excluded)
end

all_tp = 0
all_f1 = 0
res_tag2TP_cnt = tag2TP_cnt.sort_by { |key, value| key }
res_tag2TP_cnt.each do |t, tp|
  if @options[:excluded].include?(t)
    next
  end

  p = (tag2prediction_cnt[t] > 0.0  ?  tp.to_f / tag2prediction_cnt[t]  :  0.0)
  r = (tag2outcome_cnt[t] > 0.0  ?  tp.to_f / tag2outcome_cnt[t]  :  0.0)
  f1 = (p+r > 0.0  ?  2*p*r / (p+r)  :  0.0)
  if !@options[:statistics]
    print_stat("Class  %-6s" % [t],
                 p, pretty_div(tp, tag2prediction_cnt[t]),
                 r, pretty_div(tp, tag2outcome_cnt[t]),
                 f1, "")
  end
  all_precision += p
  all_recall += r
  all_tp += tp
  all_f1 += f1
end

all_rt = 0
tag2prediction_cnt.each do |tag, rt|
  all_rt += rt
end

all_gt = 0
tag2outcome_cnt.each do |tag, gt|
  all_gt += gt
end

included_labels_count = res_tag2TP_cnt.size()
if included_labels_count == 1
  @options[:accuracy] = true
  @options[:micro_avg] = true
  @options[:macro_avg] = true
end

if !@options[:accuracy]
  accuracy = all_tp.to_f / all_rt.to_f
  print_accuracy(accuracy, pretty_div(all_tp, all_rt))
end

if !@options[:micro_avg]
  micro_avg_precision = all_tp.to_f / all_rt.to_f
  micro_avg_recall = all_tp.to_f / all_gt.to_f
  micro_avg_f1 = 2*micro_avg_precision*micro_avg_recall / (micro_avg_precision+micro_avg_recall)
  print_stat("Micro average",
               micro_avg_precision, pretty_div(all_tp, all_rt),
               micro_avg_recall, pretty_div(all_tp, all_gt),
               micro_avg_f1, "")
end

if !@options[:macro_avg] && tag2TP_cnt.size > 0
  macro_avg_precision = all_precision / tag2TP_cnt.size
  macro_avg_recall = all_recall / tag2TP_cnt.size
  macro_avg_f1 = all_f1 / tag2TP_cnt.size
  print_stat("Macro average",
               macro_avg_precision, "",
               macro_avg_recall, "",
               macro_avg_f1, "")
end