File: test_heri-eval.sh

package info (click to toggle)
herisvm 0.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 328 kB
  • sloc: sh: 1,471; ruby: 615; makefile: 28
file content (380 lines) | stat: -rw-r--r-- 15,493 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
res_dir="$tmpdir/dir-eval"
mkdir -p "$res_dir"

export PATH="$(pwd):$PATH"

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -O "$res_dir/errors.txt" -n5 matrix.libsvm >/dev/null
sort "$res_dir/errors.txt" |
cmp 'heri-eval #1 -O' \
'#14 1 0 0.9799999999999999
#28 0 1 0.9599999999999999
#29 0 1 0.9399999999999997
#30 0 1 0.9199999999999998
#32 0 1 0.8999999999999997
'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -o "$res_dir/results.txt" -n5 matrix.libsvm >/dev/null
awk 'NR == 14 || NR == 28' "$res_dir/results.txt" |
cmp 'heri-eval #2 -o' \
'1 0 0.9799999999999999
0 1 0.9599999999999999
'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -m "$res_dir/confusion_matrix.txt" -n5 matrix.libsvm >/dev/null
cat "$res_dir/confusion_matrix.txt" |
cmp 'heri-eval #3 -m' \
'4 : 0 1
1 : 1 0
'

heri-eval -h 2>&1 | sed -n 's/^usage:.*/usage:/p' |
cmp 'heri-eval #4 -h' \
'usage:
'

{ heri-eval 2>&1; echo ex=$?; } |
cmp 'heri-eval #5 no args' \
'Either -n or -r or -e must be specified, run heri-eval -h for details
ex=1
'

rm $res_dir/*
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -e matrix_test.libsvm \
  -o "$res_dir/results.txt" \
  -m "$res_dir/confusion_matrix.txt" \
  -O "$res_dir/errors.txt" matrix.libsvm 2>&1 |
cmp 'heri-eval #6 -e' \
'Total statistics
  Class  0      P, R, F1:  0.75       3/4      ,  0.5        3/6      ,  0.6   
  Class  1      P, R, F1:  0.5714     4/7      ,  0.8        4/5      ,  0.6667
  Accuracy              :  0.6364     7/11     
  Macro average P, R, F1:  0.6607              ,  0.65                ,  0.6333

'

cat "$res_dir/results.txt" "$res_dir/confusion_matrix.txt" "$res_dir/errors.txt" |
    awk 'BEGIN {OFMT="%0.6g"} /:/ {print; next} {printf "%s %s %0.6g\n", $1, $2, $3}' |
cmp 'heri-eval #6.1 -e + -o + -O + -m' \
'1 1 0.25
1 1 0.375
1 0 0.98
1 1 0.5
1 1 0.625
0 0 0.25
0 1 0.96
0 1 0.94
0 1 0.92
0 0 0.125
0 0 0
3 : 0 1
1 : 1 0
#3 1 0
#7 0 1
#8 0 1
#9 0 1
'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -S 100500 -f -n5 matrix.libsvm | awk 'NR==1, /^Total/' |
cmp 'heri-eval #7 -S 100500 -f' \
'Fold 1x1 statistics
  Class  0      P, R, F1:  1          6/6      ,  0.75       6/8      ,  0.8571
  Class  1      P, R, F1:  0.75       6/8      ,  1          6/6      ,  0.8571
  Accuracy              :  0.8571    12/14     
  Macro average P, R, F1:  0.875               ,  0.875               ,  0.8571

Fold 1x2 statistics
  Class  0      P, R, F1:  1          7/7      ,  0.875      7/8      ,  0.9333
  Class  1      P, R, F1:  0.8571     6/7      ,  1          6/6      ,  0.9231
  Accuracy              :  0.9286    13/14     
  Macro average P, R, F1:  0.9286              ,  0.9375              ,  0.9282

Fold 1x3 statistics
  Class  0      P, R, F1:  0.8889     8/9      ,  1          8/8      ,  0.9412
  Class  1      P, R, F1:  1          5/5      ,  0.8333     5/6      ,  0.9091
  Accuracy              :  0.9286    13/14     
  Macro average P, R, F1:  0.9444              ,  0.9167              ,  0.9251

Fold 1x4 statistics
  Class  0      P, R, F1:  1          8/8      ,  1          8/8      ,  1     
  Class  1      P, R, F1:  1          6/6      ,  1          6/6      ,  1     
  Accuracy              :  1         14/14     
  Macro average P, R, F1:  1                   ,  1                   ,  1     

Fold 1x5 statistics
  Class  0      P, R, F1:  1          7/7      ,  0.875      7/8      ,  0.9333
  Class  1      P, R, F1:  0.8333     5/6      ,  1          5/5      ,  0.9091
  Accuracy              :  0.9231    12/13     
  Macro average P, R, F1:  0.9167              ,  0.9375              ,  0.9212

Total statistics
'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -S 100500 -p '-mr' -n5 matrix.libsvm |
cmp 'heri-eval #8 -p' \
'Total statistics
  Class  0      P, R, F1:  0.973     36/37     ,  0.9       36/40     ,  0.9351
  Class  1      P, R, F1:  0.875     28/32     ,  0.9655    28/29     ,  0.918 
  Accuracy              :  0.9275    64/69     

Total cross-folds statistics
  Class  0             P> mean, maxdev, stddev      : 97.8   8.89   4.97
  Class  1             P> mean, maxdev, stddev      : 88.8   13.8   11.0

  Class  0             R> mean, maxdev, stddev      : 90.0   15.0   10.5
  Class  1             R> mean, maxdev, stddev      : 96.7   13.3   7.45

  Class  0            F1> mean, maxdev, stddev      : 93.3   7.59   5.08
  Class  1            F1> mean, maxdev, stddev      : 92.0   8.03   5.15

                       A> mean, maxdev, stddev      : 92.7   7.25   5.06

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -S 100500 -p '-mr' -n5 -f -t2 matrix.libsvm |
cmp 'heri-eval #8.1 -p -t2' \
'Fold 1x1 statistics
  Class  0      P, R, F1:  1          6/6      ,  0.75       6/8      ,  0.8571
  Class  1      P, R, F1:  0.75       6/8      ,  1          6/6      ,  0.8571
  Accuracy              :  0.8571    12/14     

Fold 1x2 statistics
  Class  0      P, R, F1:  1          7/7      ,  0.875      7/8      ,  0.9333
  Class  1      P, R, F1:  0.8571     6/7      ,  1          6/6      ,  0.9231
  Accuracy              :  0.9286    13/14     

Fold 1x3 statistics
  Class  0      P, R, F1:  0.8889     8/9      ,  1          8/8      ,  0.9412
  Class  1      P, R, F1:  1          5/5      ,  0.8333     5/6      ,  0.9091
  Accuracy              :  0.9286    13/14     

Fold 1x4 statistics
  Class  0      P, R, F1:  1          8/8      ,  1          8/8      ,  1     
  Class  1      P, R, F1:  1          6/6      ,  1          6/6      ,  1     
  Accuracy              :  1         14/14     

Fold 1x5 statistics
  Class  0      P, R, F1:  1          7/7      ,  0.875      7/8      ,  0.9333
  Class  1      P, R, F1:  0.8333     5/6      ,  1          5/5      ,  0.9091
  Accuracy              :  0.9231    12/13     

Fold 2x1 statistics
  Class  0      P, R, F1:  1          8/8      ,  1          8/8      ,  1     
  Class  1      P, R, F1:  1          6/6      ,  1          6/6      ,  1     
  Accuracy              :  1         14/14     

Fold 2x2 statistics
  Class  0      P, R, F1:  1          8/8      ,  1          8/8      ,  1     
  Class  1      P, R, F1:  1          6/6      ,  1          6/6      ,  1     
  Accuracy              :  1         14/14     

Fold 2x3 statistics
  Class  0      P, R, F1:  1          7/7      ,  0.875      7/8      ,  0.9333
  Class  1      P, R, F1:  0.8571     6/7      ,  1          6/6      ,  0.9231
  Accuracy              :  0.9286    13/14     

Fold 2x4 statistics
  Class  0      P, R, F1:  1          7/7      ,  0.875      7/8      ,  0.9333
  Class  1      P, R, F1:  0.8571     6/7      ,  1          6/6      ,  0.9231
  Accuracy              :  0.9286    13/14     

Fold 2x5 statistics
  Class  0      P, R, F1:  0.8571     6/7      ,  0.75       6/8      ,  0.8   
  Class  1      P, R, F1:  0.6667     4/6      ,  0.8        4/5      ,  0.7273
  Accuracy              :  0.7692    10/13     

Total statistics
  Class  0      P, R, F1:  0.973     72/74     ,  0.9       72/80     ,  0.9351
  Class  1      P, R, F1:  0.875     56/64     ,  0.9655    56/58     ,  0.918 
  Accuracy              :  0.9275   128/138    

Total cross-folds statistics
  Class  0             P> mean, maxdev, stddev      : 97.5   11.7   5.41
  Class  1             P> mean, maxdev, stddev      : 88.2   21.5   11.7

  Class  0             R> mean, maxdev, stddev      : 90.0   15.0   9.86
  Class  1             R> mean, maxdev, stddev      : 96.3   16.3   7.77

  Class  0            F1> mean, maxdev, stddev      : 93.3   13.3   6.41
  Class  1            F1> mean, maxdev, stddev      : 91.7   19.0   8.20

                       A> mean, maxdev, stddev      : 92.6   15.7   7.13

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -M tfc -S 100 -n2 matrix.libsvm 2>&1 |
cmp 'heri-eval #9.1 -M tfc' \
'Fold 1x1 statistics
  Class  0      P, R, F1:  0.95      19/20     ,  0.95      19/20     ,  0.95  
  Class  1      P, R, F1:  0.9333    14/15     ,  0.9333    14/15     ,  0.9333
  Accuracy              :  0.9429    33/35     
  Macro average P, R, F1:  0.9417              ,  0.9417              ,  0.9417

Fold 1x2 statistics
  Class  0      P, R, F1:  1         17/17     ,  0.85      17/20     ,  0.9189
  Class  1      P, R, F1:  0.8235    14/17     ,  1         14/14     ,  0.9032
  Accuracy              :  0.9118    31/34     
  Macro average P, R, F1:  0.9118              ,  0.925               ,  0.9111

Total statistics
  Class  0      P, R, F1:  0.973     36/37     ,  0.9       36/40     ,  0.9351
  Class  1      P, R, F1:  0.875     28/32     ,  0.9655    28/29     ,  0.918 
  Accuracy              :  0.9275    64/69     
  Macro average P, R, F1:  0.924               ,  0.9328              ,  0.9265

Total cross-folds statistics
  Macro average        P> mean, maxdev, stddev      : 92.7   1.50   2.11
  Class  0             P> mean, maxdev, stddev      : 97.5   2.50   3.54
  Class  1             P> mean, maxdev, stddev      : 87.8   5.49   7.76

  Macro average        R> mean, maxdev, stddev      : 93.3  0.833   1.18
  Class  0             R> mean, maxdev, stddev      : 90.0   5.00   7.07
  Class  1             R> mean, maxdev, stddev      : 96.7   3.33   4.71

  Macro average       F1> mean, maxdev, stddev      : 92.6   1.53   2.16
  Class  0            F1> mean, maxdev, stddev      : 93.4   1.55   2.20
  Class  1            F1> mean, maxdev, stddev      : 91.8   1.51   2.13

                       A> mean, maxdev, stddev      : 92.7   1.55   2.20

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -Mt -S 100 -n2 matrix.libsvm 2>&1 |
cmp 'heri-eval #9.2 -Mt' \
'Total statistics
  Class  0      P, R, F1:  0.973     36/37     ,  0.9       36/40     ,  0.9351
  Class  1      P, R, F1:  0.875     28/32     ,  0.9655    28/29     ,  0.918 
  Accuracy              :  0.9275    64/69     
  Macro average P, R, F1:  0.924               ,  0.9328              ,  0.9265

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -M tf -S 100 -n2 matrix.libsvm 2>&1 |
cmp 'heri-eval #9.3 -M tf' \
'Fold 1x1 statistics
  Class  0      P, R, F1:  0.95      19/20     ,  0.95      19/20     ,  0.95  
  Class  1      P, R, F1:  0.9333    14/15     ,  0.9333    14/15     ,  0.9333
  Accuracy              :  0.9429    33/35     
  Macro average P, R, F1:  0.9417              ,  0.9417              ,  0.9417

Fold 1x2 statistics
  Class  0      P, R, F1:  1         17/17     ,  0.85      17/20     ,  0.9189
  Class  1      P, R, F1:  0.8235    14/17     ,  1         14/14     ,  0.9032
  Accuracy              :  0.9118    31/34     
  Macro average P, R, F1:  0.9118              ,  0.925               ,  0.9111

Total statistics
  Class  0      P, R, F1:  0.973     36/37     ,  0.9       36/40     ,  0.9351
  Class  1      P, R, F1:  0.875     28/32     ,  0.9655    28/29     ,  0.918 
  Accuracy              :  0.9275    64/69     
  Macro average P, R, F1:  0.924               ,  0.9328              ,  0.9265

'

env SVM_TRAIN_CMD=test_train SVM_PREDICT_CMD=test_predict \
    heri-eval -Mt -n2 matrix.libsvm -- -0 2>&1 |
cmp 'heri-eval #10.1 -- options' \
'Total statistics
  Class  0      P, R, F1:  0.5797    40/69     ,  1         40/40     ,  0.7339
  Class  1      P, R, F1:  0          0/0      ,  0          0/29     ,  0     
  Accuracy              :  0.5797    40/69     
  Macro average P, R, F1:  0.2899              ,  0.5                 ,  0.367 

'

env SVM_TRAIN_CMD=test_train SVM_PREDICT_CMD=test_predict \
    heri-eval -Mt -n2 matrix.libsvm -- -1 2>&1 |
cmp 'heri-eval #10.2 -- options' \
'Total statistics
  Class  0      P, R, F1:  0          0/0      ,  0          0/40     ,  0     
  Class  1      P, R, F1:  0.4203    29/69     ,  1         29/29     ,  0.5918
  Accuracy              :  0.4203    29/69     
  Macro average P, R, F1:  0.2101              ,  0.5                 ,  0.2959

'

env SVM_TRAIN_CMD=test_train SVM_PREDICT_CMD=test_predict \
    heri-eval -Mt -s '-r' -S117 -n2 matrix.libsvm -- -1 2>&1 |
cmp 'heri-eval #10.3 -- options' \
'Total statistics
  Class  0      P, R, F1:  0          0/0      ,  0          0/40     ,  0     
  Class  1      P, R, F1:  0.4203    29/69     ,  1         29/29     ,  0.5918
  Accuracy              :  0.4203    29/69     
  Macro average P, R, F1:  0.2101              ,  0.5                 ,  0.2959

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -Mt -S 100 -r 70 matrix.libsvm 2>&1 |
cmp 'heri-eval #10.4 -- options' \
'Total statistics
  Class  0      P, R, F1:  1         10/10     ,  0.8333    10/12     ,  0.9091
  Class  1      P, R, F1:  0.8182     9/11     ,  1          9/9      ,  0.9   
  Accuracy              :  0.9048    19/21     
  Macro average P, R, F1:  0.9091              ,  0.9167              ,  0.9045

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -Mt -S 100 -r 70 matrix.libsvm 2>&1 |
cmp 'heri-eval #10.4 -- options' \
'Total statistics
  Class  0      P, R, F1:  1         10/10     ,  0.8333    10/12     ,  0.9091
  Class  1      P, R, F1:  0.8182     9/11     ,  1          9/9      ,  0.9   
  Accuracy              :  0.9048    19/21     
  Macro average P, R, F1:  0.9091              ,  0.9167              ,  0.9045

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -Mt -S 100 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.1 -- options' \
'Total statistics
  Class  0      P, R, F1:  0.9091    60/66     ,  0.9677    60/62     ,  0.9375
  Class  1      P, R, F1:  0.9636    53/55     ,  0.8983    53/59     ,  0.9298
  Accuracy              :  0.9339   113/121    
  Macro average P, R, F1:  0.9364              ,  0.933               ,  0.9337

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -Mt -S 100 -T-100 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.2 -- options' \
'Total statistics
  Class  0      P, R, F1:  0.9091    60/66     ,  0.9677    60/62     ,  0.9375
  Class  1      P, R, F1:  0.9636    53/55     ,  0.8983    53/59     ,  0.9298
  Micro average P, R, F1:  0.9339   113/121    ,  0.9339   113/121    ,  0.9339
  Macro average P, R, F1:  0.9364              ,  0.933               ,  0.9337

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -Mt -S 100 -T0 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.3 -- options' \
'Total statistics
  Class  0      P, R, F1:  0.9091    60/66     ,  0.9677    60/62     ,  0.9375
  Class  1      P, R, F1:  0.9636    53/55     ,  0.8983    53/59     ,  0.9298
  Micro average P, R, F1:  0.9339   113/121    ,  0.9339   113/121    ,  0.9339
  Macro average P, R, F1:  0.9364              ,  0.933               ,  0.9337

'

env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
    heri-eval -Mt -S 100 -T0.1 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.2 -- options' \
'Total statistics
  Class  0      P, R, F1:  1         47/47     ,  0.7581    47/62     ,  0.8624
  Class  1      P, R, F1:  1         47/47     ,  0.7966    47/59     ,  0.8868
  Micro average P, R, F1:  1         94/94     ,  0.7769    94/121    ,  0.8744
  Macro average P, R, F1:  1                   ,  0.7773              ,  0.8746

'