1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
res_dir="$tmpdir/dir-eval"
mkdir -p "$res_dir"
export PATH="$(pwd):$PATH"
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -O "$res_dir/errors.txt" -n5 matrix.libsvm >/dev/null
sort "$res_dir/errors.txt" |
cmp 'heri-eval #1 -O' \
'#14 1 0 0.9799999999999999
#28 0 1 0.9599999999999999
#29 0 1 0.9399999999999997
#30 0 1 0.9199999999999998
#32 0 1 0.8999999999999997
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -o "$res_dir/results.txt" -n5 matrix.libsvm >/dev/null
awk 'NR == 14 || NR == 28' "$res_dir/results.txt" |
cmp 'heri-eval #2 -o' \
'1 0 0.9799999999999999
0 1 0.9599999999999999
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -m "$res_dir/confusion_matrix.txt" -n5 matrix.libsvm >/dev/null
cat "$res_dir/confusion_matrix.txt" |
cmp 'heri-eval #3 -m' \
'4 : 0 1
1 : 1 0
'
heri-eval -h 2>&1 | sed -n 's/^usage:.*/usage:/p' |
cmp 'heri-eval #4 -h' \
'usage:
'
{ heri-eval 2>&1; echo ex=$?; } |
cmp 'heri-eval #5 no args' \
'Either -n or -r or -e must be specified, run heri-eval -h for details
ex=1
'
rm $res_dir/*
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -e matrix_test.libsvm \
-o "$res_dir/results.txt" \
-m "$res_dir/confusion_matrix.txt" \
-O "$res_dir/errors.txt" matrix.libsvm 2>&1 |
cmp 'heri-eval #6 -e' \
'Total statistics
Class 0 P, R, F1: 0.75 3/4 , 0.5 3/6 , 0.6
Class 1 P, R, F1: 0.5714 4/7 , 0.8 4/5 , 0.6667
Accuracy : 0.6364 7/11
Macro average P, R, F1: 0.6607 , 0.65 , 0.6333
'
cat "$res_dir/results.txt" "$res_dir/confusion_matrix.txt" "$res_dir/errors.txt" |
awk 'BEGIN {OFMT="%0.6g"} /:/ {print; next} {printf "%s %s %0.6g\n", $1, $2, $3}' |
cmp 'heri-eval #6.1 -e + -o + -O + -m' \
'1 1 0.25
1 1 0.375
1 0 0.98
1 1 0.5
1 1 0.625
0 0 0.25
0 1 0.96
0 1 0.94
0 1 0.92
0 0 0.125
0 0 0
3 : 0 1
1 : 1 0
#3 1 0
#7 0 1
#8 0 1
#9 0 1
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -S 100500 -f -n5 matrix.libsvm | awk 'NR==1, /^Total/' |
cmp 'heri-eval #7 -S 100500 -f' \
'Fold 1x1 statistics
Class 0 P, R, F1: 1 6/6 , 0.75 6/8 , 0.8571
Class 1 P, R, F1: 0.75 6/8 , 1 6/6 , 0.8571
Accuracy : 0.8571 12/14
Macro average P, R, F1: 0.875 , 0.875 , 0.8571
Fold 1x2 statistics
Class 0 P, R, F1: 1 7/7 , 0.875 7/8 , 0.9333
Class 1 P, R, F1: 0.8571 6/7 , 1 6/6 , 0.9231
Accuracy : 0.9286 13/14
Macro average P, R, F1: 0.9286 , 0.9375 , 0.9282
Fold 1x3 statistics
Class 0 P, R, F1: 0.8889 8/9 , 1 8/8 , 0.9412
Class 1 P, R, F1: 1 5/5 , 0.8333 5/6 , 0.9091
Accuracy : 0.9286 13/14
Macro average P, R, F1: 0.9444 , 0.9167 , 0.9251
Fold 1x4 statistics
Class 0 P, R, F1: 1 8/8 , 1 8/8 , 1
Class 1 P, R, F1: 1 6/6 , 1 6/6 , 1
Accuracy : 1 14/14
Macro average P, R, F1: 1 , 1 , 1
Fold 1x5 statistics
Class 0 P, R, F1: 1 7/7 , 0.875 7/8 , 0.9333
Class 1 P, R, F1: 0.8333 5/6 , 1 5/5 , 0.9091
Accuracy : 0.9231 12/13
Macro average P, R, F1: 0.9167 , 0.9375 , 0.9212
Total statistics
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -S 100500 -p '-mr' -n5 matrix.libsvm |
cmp 'heri-eval #8 -p' \
'Total statistics
Class 0 P, R, F1: 0.973 36/37 , 0.9 36/40 , 0.9351
Class 1 P, R, F1: 0.875 28/32 , 0.9655 28/29 , 0.918
Accuracy : 0.9275 64/69
Total cross-folds statistics
Class 0 P> mean, maxdev, stddev : 97.8 8.89 4.97
Class 1 P> mean, maxdev, stddev : 88.8 13.8 11.0
Class 0 R> mean, maxdev, stddev : 90.0 15.0 10.5
Class 1 R> mean, maxdev, stddev : 96.7 13.3 7.45
Class 0 F1> mean, maxdev, stddev : 93.3 7.59 5.08
Class 1 F1> mean, maxdev, stddev : 92.0 8.03 5.15
A> mean, maxdev, stddev : 92.7 7.25 5.06
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -S 100500 -p '-mr' -n5 -f -t2 matrix.libsvm |
cmp 'heri-eval #8.1 -p -t2' \
'Fold 1x1 statistics
Class 0 P, R, F1: 1 6/6 , 0.75 6/8 , 0.8571
Class 1 P, R, F1: 0.75 6/8 , 1 6/6 , 0.8571
Accuracy : 0.8571 12/14
Fold 1x2 statistics
Class 0 P, R, F1: 1 7/7 , 0.875 7/8 , 0.9333
Class 1 P, R, F1: 0.8571 6/7 , 1 6/6 , 0.9231
Accuracy : 0.9286 13/14
Fold 1x3 statistics
Class 0 P, R, F1: 0.8889 8/9 , 1 8/8 , 0.9412
Class 1 P, R, F1: 1 5/5 , 0.8333 5/6 , 0.9091
Accuracy : 0.9286 13/14
Fold 1x4 statistics
Class 0 P, R, F1: 1 8/8 , 1 8/8 , 1
Class 1 P, R, F1: 1 6/6 , 1 6/6 , 1
Accuracy : 1 14/14
Fold 1x5 statistics
Class 0 P, R, F1: 1 7/7 , 0.875 7/8 , 0.9333
Class 1 P, R, F1: 0.8333 5/6 , 1 5/5 , 0.9091
Accuracy : 0.9231 12/13
Fold 2x1 statistics
Class 0 P, R, F1: 1 8/8 , 1 8/8 , 1
Class 1 P, R, F1: 1 6/6 , 1 6/6 , 1
Accuracy : 1 14/14
Fold 2x2 statistics
Class 0 P, R, F1: 1 8/8 , 1 8/8 , 1
Class 1 P, R, F1: 1 6/6 , 1 6/6 , 1
Accuracy : 1 14/14
Fold 2x3 statistics
Class 0 P, R, F1: 1 7/7 , 0.875 7/8 , 0.9333
Class 1 P, R, F1: 0.8571 6/7 , 1 6/6 , 0.9231
Accuracy : 0.9286 13/14
Fold 2x4 statistics
Class 0 P, R, F1: 1 7/7 , 0.875 7/8 , 0.9333
Class 1 P, R, F1: 0.8571 6/7 , 1 6/6 , 0.9231
Accuracy : 0.9286 13/14
Fold 2x5 statistics
Class 0 P, R, F1: 0.8571 6/7 , 0.75 6/8 , 0.8
Class 1 P, R, F1: 0.6667 4/6 , 0.8 4/5 , 0.7273
Accuracy : 0.7692 10/13
Total statistics
Class 0 P, R, F1: 0.973 72/74 , 0.9 72/80 , 0.9351
Class 1 P, R, F1: 0.875 56/64 , 0.9655 56/58 , 0.918
Accuracy : 0.9275 128/138
Total cross-folds statistics
Class 0 P> mean, maxdev, stddev : 97.5 11.7 5.41
Class 1 P> mean, maxdev, stddev : 88.2 21.5 11.7
Class 0 R> mean, maxdev, stddev : 90.0 15.0 9.86
Class 1 R> mean, maxdev, stddev : 96.3 16.3 7.77
Class 0 F1> mean, maxdev, stddev : 93.3 13.3 6.41
Class 1 F1> mean, maxdev, stddev : 91.7 19.0 8.20
A> mean, maxdev, stddev : 92.6 15.7 7.13
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -M tfc -S 100 -n2 matrix.libsvm 2>&1 |
cmp 'heri-eval #9.1 -M tfc' \
'Fold 1x1 statistics
Class 0 P, R, F1: 0.95 19/20 , 0.95 19/20 , 0.95
Class 1 P, R, F1: 0.9333 14/15 , 0.9333 14/15 , 0.9333
Accuracy : 0.9429 33/35
Macro average P, R, F1: 0.9417 , 0.9417 , 0.9417
Fold 1x2 statistics
Class 0 P, R, F1: 1 17/17 , 0.85 17/20 , 0.9189
Class 1 P, R, F1: 0.8235 14/17 , 1 14/14 , 0.9032
Accuracy : 0.9118 31/34
Macro average P, R, F1: 0.9118 , 0.925 , 0.9111
Total statistics
Class 0 P, R, F1: 0.973 36/37 , 0.9 36/40 , 0.9351
Class 1 P, R, F1: 0.875 28/32 , 0.9655 28/29 , 0.918
Accuracy : 0.9275 64/69
Macro average P, R, F1: 0.924 , 0.9328 , 0.9265
Total cross-folds statistics
Macro average P> mean, maxdev, stddev : 92.7 1.50 2.11
Class 0 P> mean, maxdev, stddev : 97.5 2.50 3.54
Class 1 P> mean, maxdev, stddev : 87.8 5.49 7.76
Macro average R> mean, maxdev, stddev : 93.3 0.833 1.18
Class 0 R> mean, maxdev, stddev : 90.0 5.00 7.07
Class 1 R> mean, maxdev, stddev : 96.7 3.33 4.71
Macro average F1> mean, maxdev, stddev : 92.6 1.53 2.16
Class 0 F1> mean, maxdev, stddev : 93.4 1.55 2.20
Class 1 F1> mean, maxdev, stddev : 91.8 1.51 2.13
A> mean, maxdev, stddev : 92.7 1.55 2.20
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -Mt -S 100 -n2 matrix.libsvm 2>&1 |
cmp 'heri-eval #9.2 -Mt' \
'Total statistics
Class 0 P, R, F1: 0.973 36/37 , 0.9 36/40 , 0.9351
Class 1 P, R, F1: 0.875 28/32 , 0.9655 28/29 , 0.918
Accuracy : 0.9275 64/69
Macro average P, R, F1: 0.924 , 0.9328 , 0.9265
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -M tf -S 100 -n2 matrix.libsvm 2>&1 |
cmp 'heri-eval #9.3 -M tf' \
'Fold 1x1 statistics
Class 0 P, R, F1: 0.95 19/20 , 0.95 19/20 , 0.95
Class 1 P, R, F1: 0.9333 14/15 , 0.9333 14/15 , 0.9333
Accuracy : 0.9429 33/35
Macro average P, R, F1: 0.9417 , 0.9417 , 0.9417
Fold 1x2 statistics
Class 0 P, R, F1: 1 17/17 , 0.85 17/20 , 0.9189
Class 1 P, R, F1: 0.8235 14/17 , 1 14/14 , 0.9032
Accuracy : 0.9118 31/34
Macro average P, R, F1: 0.9118 , 0.925 , 0.9111
Total statistics
Class 0 P, R, F1: 0.973 36/37 , 0.9 36/40 , 0.9351
Class 1 P, R, F1: 0.875 28/32 , 0.9655 28/29 , 0.918
Accuracy : 0.9275 64/69
Macro average P, R, F1: 0.924 , 0.9328 , 0.9265
'
env SVM_TRAIN_CMD=test_train SVM_PREDICT_CMD=test_predict \
heri-eval -Mt -n2 matrix.libsvm -- -0 2>&1 |
cmp 'heri-eval #10.1 -- options' \
'Total statistics
Class 0 P, R, F1: 0.5797 40/69 , 1 40/40 , 0.7339
Class 1 P, R, F1: 0 0/0 , 0 0/29 , 0
Accuracy : 0.5797 40/69
Macro average P, R, F1: 0.2899 , 0.5 , 0.367
'
env SVM_TRAIN_CMD=test_train SVM_PREDICT_CMD=test_predict \
heri-eval -Mt -n2 matrix.libsvm -- -1 2>&1 |
cmp 'heri-eval #10.2 -- options' \
'Total statistics
Class 0 P, R, F1: 0 0/0 , 0 0/40 , 0
Class 1 P, R, F1: 0.4203 29/69 , 1 29/29 , 0.5918
Accuracy : 0.4203 29/69
Macro average P, R, F1: 0.2101 , 0.5 , 0.2959
'
env SVM_TRAIN_CMD=test_train SVM_PREDICT_CMD=test_predict \
heri-eval -Mt -s '-r' -S117 -n2 matrix.libsvm -- -1 2>&1 |
cmp 'heri-eval #10.3 -- options' \
'Total statistics
Class 0 P, R, F1: 0 0/0 , 0 0/40 , 0
Class 1 P, R, F1: 0.4203 29/69 , 1 29/29 , 0.5918
Accuracy : 0.4203 29/69
Macro average P, R, F1: 0.2101 , 0.5 , 0.2959
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -Mt -S 100 -r 70 matrix.libsvm 2>&1 |
cmp 'heri-eval #10.4 -- options' \
'Total statistics
Class 0 P, R, F1: 1 10/10 , 0.8333 10/12 , 0.9091
Class 1 P, R, F1: 0.8182 9/11 , 1 9/9 , 0.9
Accuracy : 0.9048 19/21
Macro average P, R, F1: 0.9091 , 0.9167 , 0.9045
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -Mt -S 100 -r 70 matrix.libsvm 2>&1 |
cmp 'heri-eval #10.4 -- options' \
'Total statistics
Class 0 P, R, F1: 1 10/10 , 0.8333 10/12 , 0.9091
Class 1 P, R, F1: 0.8182 9/11 , 1 9/9 , 0.9
Accuracy : 0.9048 19/21
Macro average P, R, F1: 0.9091 , 0.9167 , 0.9045
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -Mt -S 100 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.1 -- options' \
'Total statistics
Class 0 P, R, F1: 0.9091 60/66 , 0.9677 60/62 , 0.9375
Class 1 P, R, F1: 0.9636 53/55 , 0.8983 53/59 , 0.9298
Accuracy : 0.9339 113/121
Macro average P, R, F1: 0.9364 , 0.933 , 0.9337
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -Mt -S 100 -T-100 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.2 -- options' \
'Total statistics
Class 0 P, R, F1: 0.9091 60/66 , 0.9677 60/62 , 0.9375
Class 1 P, R, F1: 0.9636 53/55 , 0.8983 53/59 , 0.9298
Micro average P, R, F1: 0.9339 113/121 , 0.9339 113/121 , 0.9339
Macro average P, R, F1: 0.9364 , 0.933 , 0.9337
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -Mt -S 100 -T0 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.3 -- options' \
'Total statistics
Class 0 P, R, F1: 0.9091 60/66 , 0.9677 60/62 , 0.9375
Class 1 P, R, F1: 0.9636 53/55 , 0.8983 53/59 , 0.9298
Micro average P, R, F1: 0.9339 113/121 , 0.9339 113/121 , 0.9339
Macro average P, R, F1: 0.9364 , 0.933 , 0.9337
'
env SVM_TRAIN_CMD=true SVM_PREDICT_CMD=rulebased_predict \
heri-eval -Mt -S 100 -T0.1 -e matrix_test2.libsvm matrix.libsvm 2>&1 |
cmp 'heri-eval #11.2 -- options' \
'Total statistics
Class 0 P, R, F1: 1 47/47 , 0.7581 47/62 , 0.8624
Class 1 P, R, F1: 1 47/47 , 0.7966 47/59 , 0.8868
Micro average P, R, F1: 1 94/94 , 0.7769 94/121 , 0.8744
Macro average P, R, F1: 1 , 0.7773 , 0.8746
'
|