File: EventShapes.h

package info (click to toggle)
herwig%2B%2B 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 27,128 kB
  • ctags: 24,739
  • sloc: cpp: 188,949; fortran: 23,193; sh: 11,365; python: 5,069; ansic: 3,539; makefile: 1,865; perl: 2
file content (703 lines) | stat: -rw-r--r-- 14,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// -*- C++ -*-
//
// EventShapes.h is a part of Herwig++ - A multi-purpose Monte Carlo
// event generator Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for
// details.  Please respect the MCnet academic guidelines, see
// GUIDELINES for details.
//
#ifndef HERWIG_EventShapes_H
#define HERWIG_EventShapes_H
//
// This is the declaration of the EventShapes class.
//

#include "ThePEG/Interface/Interfaced.h"
#include "ThePEG/Handlers/AnalysisHandler.h"
#include "ThePEG/Vectors/Lorentz5Vector.h"
#include "ThePEG/Vectors/ThreeVector.h"
#include "ThePEG/EventRecord/Particle.h"
#include "EventShapes.fh"

namespace Herwig {

using namespace ThePEG;

/** \ingroup Analysis
 *
 * The EventShapes class is designed so that certain event shapes, such
 * as the thrust are only calculated once per event given the speed of
 * the calculation.
 *
 * @see \ref EventShapesInterfaces "The interfaces" defined for
 * EventShapes.
 */
class EventShapes: public Interfaced {

public:

  /**
   * The default constructor.
   */
  EventShapes() : _thrustDone(false), _spherDone(false), _linTenDone(false),
		  _hemDone(false), _useCmBoost(false), 
		  _mPlus(), _mMinus(), _bPlus(), _bMinus() 
  {}

  /**
   *  Member to reset the particles to be considered
   */
  void reset(const tPVector &part) {
    _pv.resize(part.size());
    for(unsigned int ix=0;ix<part.size();++ix) _pv[ix]=part[ix]->momentum();
    _thrustDone = false;
    _spherDone  = false;
    _linTenDone = false;
    _hemDone    = false;
    _useCmBoost = false; 
  }


public:

  /**
   *  Member functions to return thrust related shapes
   */
  //@{
  /**
   *  The thrust
   */
  double thrust() {
    checkThrust(); 
    return _thrust[0];
  }

  /**
   *  The major
   */ 
  double thrustMajor() {
    checkThrust(); 
    return _thrust[1];
  }

  /**
   *  The minor
   */ 
  double thrustMinor() {
    checkThrust(); 
    return _thrust[2];
  }

  /**
   *  The oblateness
   */ 
  double oblateness() {
    checkThrust(); 
    return _thrust[1]-_thrust[2];
  }

  /**
   *  The thrust axis
   */
  Axis thrustAxis() {
    checkThrust(); 
    return _thrustAxis[0];
  }

  /**
   *  The major axis
   */ 
  Axis majorAxis() {
    checkThrust(); 
    return _thrustAxis[1];
  }

  /**
   *  The minor axis
   */
  Axis minorAxis() {
    checkThrust(); 
    return _thrustAxis[2];
  }
  //@}

  /**
   * Linear momentum tensor related event shapes
   */
  //@{
  /**
   *  The C parameter
   */
  double CParameter() {
    checkLinTen(); 
    return 3.*(_linTen[0]*_linTen[1]+_linTen[1]*_linTen[2]
	       +_linTen[2]*_linTen[0]); 
  }

  /**
   *  The D parameter
   */
  double DParameter() {
    checkLinTen(); 
    return 27.*(_linTen[0]*_linTen[1]*_linTen[2]); 
  }

  /**
   *  The eigenvalues in descending order
   */
  vector<double> linTenEigenValues() {
    checkLinTen(); 
    return _linTen; 
  }


  /**
   *  The eigenvectors in order of descending eigenvalue
   */
  vector<Axis> linTenEigenVectors() {
    checkLinTen(); 
    return _linTenAxis; 
  }

  //@}

  /**
   * Quadratic momentum tensor related variables
   */
  //@{
  /**
   *  The sphericity
   */
  double sphericity() {
    checkSphericity(); 
    return 3./2.*(_spher[1]+_spher[2]); 
  }

  /**
   *  The aplanarity
   */
  double aplanarity() {
    checkSphericity(); 
    return 3./2.*_spher[2];
  }


  /**
   *  The planarity
   */
  double planarity() {
    checkSphericity(); 
    return _spher[1]-_spher[2]; 
  }

  /**
   *  The sphericity axis
   */
  Axis sphericityAxis() {
    checkSphericity(); 
    return _spherAxis[0]; 
  }


  /**
   *  The sphericity eigenvalues
   */
  vector<double> sphericityEigenValues() {
    checkSphericity(); 
    return _spher; 
  }

  /**
   *  The sphericity eigenvectors
   */
  vector<Axis> sphericityEigenVectors() {
    checkSphericity(); 
    return _spherAxis; 
  }  //@}

  /**
   * Jet mass related event shapes
   */
  //@{
  /**
   *  The high hemishpere mass squared divided by the visible energy
   *  squared
   */
  double Mhigh2() {
    checkHemispheres();
    return _mPlus; 
  } 
  
  /**
   *  The low hemishpere mass squared divided by the visible energy
   *  squared
   */
  double Mlow2() {
    checkHemispheres();
    return _mMinus; 
  } 

  /**
   *  The difference between the 
   * hemishpere masses squared divided by the visible energy squared
   */
  double Mdiff2() {
    checkHemispheres();
    return _mPlus-_mMinus; 
  } 

  //@}

  /**
   * Jet broadening related event shapes
   */
  //@{
  /**
   *  The wide jet broadening
   */
  double Bmax() {
    checkHemispheres(); 
    return _bPlus;
  }

  /**
   *  The narrow jet broadening
   */
  double Bmin() {
    checkHemispheres(); 
    return _bMinus;
  }

  /**
   *  The sum of the jet broadenings
   */
  double Bsum() {
    checkHemispheres(); 
    return _bPlus+_bMinus;
  }


  /**
   *  The difference of the jet broadenings
   */
  double Bdiff() {
    checkHemispheres(); 
    return _bPlus-_bMinus;
  }
  //@}

  /**
   *  Single particle variables which do not depend on event shapes axes
   */
  //@{

  /**
   *  The scaled momentum \f$\xi=-\log\left( p/E_{\rm beam}\right)\f$.
   */
  double getXi(const Lorentz5Momentum & p, 
				   const Energy & Ebeam) {
    return((Ebeam > 0*MeV && p.vect().mag() > 0*MeV) ? 
	   log(Ebeam/p.vect().mag()) : -1.); 
  }

  /**
   *  Transverse momentum with respect to the beam
   */
  Energy getPt(const Lorentz5Momentum & p) {
    return p.perp(); 
  }

  /**
   *  Rapidity with respect to the beam direction
   */
  double getRapidity(const Lorentz5Momentum & p) {
    return (p.t() > p.z() ? p.rapidity() : 1e99); 
  }
  //@}

  /**
   * Single particle variables related to one of the shape axis.
   */
  //@{
  /**
   *  Transverse momentum with respect to the thrust axis in the event plane
   */
  Energy ptInT(const Lorentz5Momentum & p) {
    checkThrust(); 
    return p.vect()*_thrustAxis[1]; 
  }
  
  /**
   *  Transverse momentum with respect to the thrust axis out of the
   *  event plane
   */
  Energy ptOutT(const Lorentz5Momentum & p) {
    checkThrust(); 
    return p.vect()*_thrustAxis[2]; 
  }

  /**
   *  Rapidity with respect to the thrust axis
   */
  double yT(const Lorentz5Momentum & p) {
    checkThrust(); 
    return (p.t() > p.vect()*_thrustAxis[0] ? 
	    p.rapidity(_thrustAxis[0]) : 1e99);
  }

  /**
   *  Transverse momentum with respect to the sphericity axis in the
   *  event plane
   */
  Energy ptInS(const Lorentz5Momentum & p) { 
    checkSphericity(); 
    return p.vect()*_spherAxis[1]; 
  }

  /**
   *  Transverse momentum with respect to the sphericity axis out of the
   *  event plane
   */
  Energy ptOutS(const Lorentz5Momentum & p) {
    checkSphericity(); 
    return p.vect()*_spherAxis[2]; 
  }

  /**
   *  Rapidity with respect to the sphericity axis
   */
  double yS(const Lorentz5Momentum & p) {
    checkSphericity(); 
    return (p.t() > p.vect()*_spherAxis[0] ? 
	    p.rapidity(_spherAxis[0]) : 1e99);
  }
  //@}


  /**
   * Energy-energy correlation (EEC) @param hi is the histogram and has
   * to be provided externally It is understood that the range of the
   * histogam is -1 < cos(chi) < 1.  hi.front() contains the bin [-1 <
   * cos(chi) < -1+delta] and hi.back() the bin [1-delta < cos(chi) <
   * 1].  delta = 2/hi.size(). We use classical indices to access the
   * vector.
   */
  void bookEEC(vector<double> & hi);

  /**
   * Before writing the histogram it has to be normalized according to
   * the number of events.
   */
  void normalizeEEC(vector<double> & hi, long evts) {
    for (unsigned int bin = 0; bin < hi.size(); bin++) bin /= (hi.size()*evts);
  }
  
  /**
   * The asymmetry of EEC is calculated from a given \f$\cos\chi\f$ and
   * EEC histogram, which is a vector<double> as described above.
   */
  double AEEC(vector<double> & hi, double& coschi) {
    if (coschi > 0. && coschi <= 1.) {
      int i = static_cast<int>( floor((-coschi+1.)/2.*hi.size()) ); 
      int j = static_cast<int>( floor(( coschi+1.)/2.*hi.size()) ); 
      return hi[i]-hi[j];
    } else {
      return 1e99;
    }
  }

public:

  /**
   * The standard Init function used to initialize the interfaces.
   * Called exactly once for each class by the class description system
   * before the main function starts or when this class is dynamically
   * loaded.
   */
  static void Init();

protected:

  /** @name Clone Methods. */
  //@{
  /**
   * Make a simple clone of this object.  @return a pointer to the new
   * object.
   */
  virtual IBPtr clone() const {return new_ptr(*this);}

  /** Make a clone of this object, possibly modifying the cloned object
   * to make it sane.  @return a pointer to the new object.
   */
  virtual IBPtr fullclone() const {return new_ptr(*this);}
  //@}

private:

  /**
   *  Check whether the initialization of a certain class of event shapes
   *  has been calculated and if not do so
   */
  //@{
  /**
   *  Check if thrust related variables have been calculated and if not
   *  do so
   */
  void checkThrust() {
    if (!_thrustDone) {
      _thrustDone = true;
      calculateThrust(); 
    }
  }

  /**
   *  Check if the linear tensor related variables have been calculated
   *  and if not do so
   */
  void checkLinTen() {
    if (!_linTenDone) {
      _linTenDone = true;
      diagonalizeTensors(true, _useCmBoost); 
    }
  }

  /**
   *  Check if the quadratic tensor related variables have been
   *  calculated and if not do so
   */
  void checkSphericity() {
    if (!_spherDone) {
      _spherDone = true;
      diagonalizeTensors(false, _useCmBoost); 
    }
  }

  /**
   *  Check if the hemisphere mass variables and jet broadenings have
   *  been calculated and if not do so
   */
  void checkHemispheres() {
    if (!_hemDone) {
      _hemDone = true;
      calcHemisphereMasses(); 
    }
  }
  //@}

  /**
   *  Methods that actually calculate the event shapes
   */
  //@{
  /**
   *  Calculate the hemisphere masses and jet broadenings
   */
  void calcHemisphereMasses();

  /**
   * Calculate the thrust and related axes
   */
  void calculateThrust();

  /**
   * Diagonalize the tensors @param linear switch between
   * diagonalization of linear/quadratic tensor.  @param cmboost tells
   * whether to boost into cm frame of all momenta first, or not
   * (default off, and no interface to this).
   */
  void diagonalizeTensors(bool linear, bool cmboost);

  /**
   * Quite general diagonalization of a symmetric Matrix T, given as an
   * array of doubles.  The symmetry is not checked explicitly as this
   * is clear in the context.  It uses an explicit generic solution of
   * the eigenvalue problem and no numerical approximation, based on
   * Cardano's formula.  @param T Matrix to be diagonalised
   */
  vector<double> eigenvalues(const double T[3][3]);

  /**
   * The eigenvector of @param T to a given eigenvalue @param lam
   */
  Axis eigenvector(const double T[3][3], const double &lam);

  /**
   * The eigenvectors of @param T corresponding to the eigenvectors
   * @param lam . The ordering of the vectors corresponds to the
   * ordering of the eigenvalues.
   */
  vector<Axis> eigenvectors(const double T[3][3], const vector<double> &lam);

  /**
   *  Member to calculate the thrust
   * @param p The three vectors
   * @param t The thrust-squared (up to an Energy scale factor)
   * @param taxis The thrust axis
   */
  void calcT(const vector<Momentum3> &p, Energy2 &t, Axis &taxis);

  /**
   *  Member to calculate the major
   * @param p The three vectors
   * @param m The major-squared (up to an Energy scale factor)
   * @param maxis The major axis
   */
  void calcM(const vector<Momentum3> &p, Energy2 &m, Axis &maxis);
  //@}

private:

  /**
   * The static object used to initialize the description of this class.
   * Indicates that this is a concrete class with persistent data.
   */
  static NoPIOClassDescription<EventShapes> initEventShapes;

  /**
   * The assignment operator is private and must never be called.
   * In fact, it should not even be implemented.
   */
  EventShapes & operator=(const EventShapes &);

private:

  /**
   *  Vector of particle momenta to be analysed
   */
  vector<Lorentz5Momentum> _pv; 
  
  /**
   *  Various event shape axes
   */
  //@{
  /**
   *  The thrust related axes
   */
  vector<Axis> _thrustAxis;

  /**
   *  The sphericity related axes
   */
  vector<Axis> _spherAxis; 

  /**
   *  The linearised tensor axes
   */
  vector<Axis> _linTenAxis; 
  //@}

  /**
   *  Values of axis related event shapes
   */
  //@{
  /**
   *  Values of thrust related variables
   */
  vector<double> _thrust;

  /**
   *  Values of sphericity related variables
   */
  vector<double> _spher;

  /**
   *  Values of linearized tensor related variables
   */
  vector<double> _linTen;
  //@} 

  /**
   *  Whether or not certain event axes have been calculated
   */
  //@{
  /**
   *  Whether or not the thrust is calculated
   */
  bool _thrustDone;

  /**
   *  Whether or not the sphericity is calculated
   */
  bool _spherDone;

  /**
   *  Whether or not the linearizes tensor is calculated 
   */
  bool _linTenDone;

  /**
   *  Whether or not the hemisphere masses have been calculated
   */
  bool _hemDone; 
  //@}

  /**
   *  Whether ot not to boost to the CMS frame for the tensor diagonalizations
   */
  bool _useCmBoost;

  /**
   *  Hemisphere masses
   */
  //@{
  /**
   *  The high hemisphere mass
   */
  double _mPlus;

  /**
   *  The low hemisphere mass
   */
  double _mMinus;
  //@}

  /**
   *  The jet broadenings
   */
  //@{
  /**
   *  The wide jet broadening
   */
  double _bPlus;

  /**
   *  The narrow jet broadening
   */
  double _bMinus; 
  //@}
};

}

#include "ThePEG/Utilities/ClassTraits.h"

namespace ThePEG {

/** @cond TRAITSPECIALIZATIONS */

/** This template specialization informs ThePEG about the
 *  base classes of EventShapes. */
template <>
struct BaseClassTrait<Herwig::EventShapes,1> {
  /** Typedef of the first base class of EventShapes. */
  typedef Interfaced NthBase;
};

/** This template specialization informs ThePEG about the name of
 *  the EventShapes class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::EventShapes>
  : public ClassTraitsBase<Herwig::EventShapes> {
  /** Return a platform-independent class name */
  static string className() { return "Herwig::EventShapes"; }
  /** Return the name(s) of the shared library (or libraries) be loaded to get
   *  access to the EventShapes class and any other class on which it depends
   *  (except the base class). */
  static string library() { return "HwAnalysis.so"; }
};

/** @endcond */

}

#endif /* HERWIG_EventShapes_H */