File: MEfftoVH.cc

package info (click to toggle)
herwig%2B%2B 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 27,128 kB
  • ctags: 24,739
  • sloc: cpp: 188,949; fortran: 23,193; sh: 11,365; python: 5,069; ansic: 3,539; makefile: 1,865; perl: 2
file content (447 lines) | stat: -rw-r--r-- 15,745 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MEfftoVH class.
//

#include "MEfftoVH.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/MatrixElement/Tree2toNDiagram.h"
#include "ThePEG/Utilities/SimplePhaseSpace.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "ThePEG/Cuts/Cuts.h"
#include "Herwig++/Models/StandardModel/StandardModel.h"
#include "Herwig++/MatrixElement/HardVertex.h"
#include "Herwig++/Utilities/Kinematics.h"
#include "ThePEG/PDF/PolarizedBeamParticleData.h"

using namespace Herwig;

void MEfftoVH::persistentOutput(PersistentOStream & os) const {
  os << _shapeopt << _wplus << _wminus << _z0 << _higgs
     << _vertexFFW << _vertexFFZ << _vertexWWH << _maxflavour
     << ounit(_mh,GeV) << ounit(_wh,GeV) << _hmass;
}

void MEfftoVH::persistentInput(PersistentIStream & is, int) {
  is >> _shapeopt >> _wplus >> _wminus >> _z0 >> _higgs 
     >> _vertexFFW >> _vertexFFZ >> _vertexWWH >> _maxflavour
     >> iunit(_mh,GeV) >> iunit(_wh,GeV) >> _hmass;
}

AbstractClassDescription<MEfftoVH> MEfftoVH::initMEfftoVH;
// Definition of the static class description member.

void MEfftoVH::Init() {

  static ClassDocumentation<MEfftoVH> documentation
    ("The MEfftoVH class is the base class for the Bjirken process f fbar -> V H");

  static Switch<MEfftoVH,unsigned int> interfaceShapeOption
    ("ShapeScheme",
     "Option for the treatment of the Higgs resonance shape",
     &MEfftoVH::_shapeopt, 2, false, false);
  static SwitchOption interfaceStandardShapeFixed
    (interfaceShapeOption,
     "FixedBreitWigner",
     "Breit-Wigner s-channel resonanse",
     1);
  static SwitchOption interfaceStandardShapeRunning
    (interfaceShapeOption,
     "MassGenerator",
     "Use the mass generator to give the shape",
     2);
  static SwitchOption interfaceStandardShapeOnShell
    (interfaceShapeOption,
     "OnShell",
     "Produce an on-shell Higgs boson",
     0);

  static Parameter<MEfftoVH,unsigned int> interfaceMaxFlavour
    ( "MaxFlavour",
      "The heaviest incoming quark flavour this matrix element is allowed to handle "
      "(if applicable).",
      &MEfftoVH::_maxflavour, 5, 1, 5, false, false, true);

}

unsigned int MEfftoVH::orderInAlphaS() const {
  return 0;
}

unsigned int MEfftoVH::orderInAlphaEW() const {
  return 3;
}

Energy2 MEfftoVH::scale() const {
  return sHat();
}

int MEfftoVH::nDim() const {
  return 4 + int(_shapeopt>0);
}

void MEfftoVH::setKinematics() {
  DrellYanBase::setKinematics();
}

Selector<MEBase::DiagramIndex>
MEfftoVH::diagrams(const DiagramVector & diags) const {
  Selector<DiagramIndex> sel;
  for ( DiagramIndex i = 0; i < diags.size(); ++i ) 
    sel.insert(1.0, i);
  return sel;
}

Selector<const ColourLines *>
MEfftoVH::colourGeometries(tcDiagPtr ) const {
  static ColourLines c1("");
  static ColourLines c2("6 -7");
  static ColourLines c3("1 -2");
  static ColourLines c4("1 -2, 6 -7");
  Selector<const ColourLines *> sel;
  if(mePartonData()[0]->coloured()) {
    if(mePartonData()[4]->coloured()) sel.insert(1.0, &c4);
    else                              sel.insert(1.0, &c3);
  }
  else {
    if(mePartonData()[4]->coloured()) sel.insert(1.0, &c2);
    else                              sel.insert(1.0, &c1);
  }
  return sel;
}

void MEfftoVH::doinit() {
  DrellYanBase::doinit();
  // get the vedrtex pointers from the SM object
  tcHwSMPtr hwsm= dynamic_ptr_cast<tcHwSMPtr>(standardModel());
  // do the initialisation
  if(hwsm) {
    _vertexFFW = hwsm->vertexFFW();
    _vertexFFZ = hwsm->vertexFFZ();
  }
  else throw InitException() << "Wrong type of StandardModel object in "
			     << "MEfftoVH::doinit() the Herwig++"
			     << " version must be used" 
			     << Exception::runerror;
  // get the particle data objects for the intermediates
  _wplus  = getParticleData(ParticleID::Wplus );
  _wminus = getParticleData(ParticleID::Wminus);
  _z0     = getParticleData(ParticleID::Z0);
  // higgs stuff
  _mh = _higgs->mass();
  _wh = _higgs->width();
  if(_higgs->massGenerator()) {
    _hmass=dynamic_ptr_cast<GenericMassGeneratorPtr>(_higgs->massGenerator());
  }
  if(_shapeopt==2&&!_hmass) 
    throw InitException()
      << "If using the mass generator for the line shape in MEfftoVH::doinit()"
      << "the mass generator must be an instance of the GenericMassGenerator class"
      << Exception::runerror;
}

double MEfftoVH::me2() const {
  vector<SpinorWaveFunction>    fin,aout;
  vector<SpinorBarWaveFunction> ain,fout;
  SpinorWaveFunction       q(meMomenta()[0],mePartonData()[0],incoming);
  SpinorBarWaveFunction qbar(meMomenta()[1],mePartonData()[1],incoming);
  SpinorBarWaveFunction    f(meMomenta()[3],mePartonData()[3],outgoing);
  SpinorWaveFunction    fbar(meMomenta()[4],mePartonData()[4],outgoing);
  for(unsigned int ix=0;ix<2;++ix) {
    q.reset(ix)   ; fin.push_back(q);
    qbar.reset(ix); ain.push_back(qbar);
    f.reset(ix)   ;fout.push_back(f);
    fbar.reset(ix);aout.push_back(fbar);
  }
  return helicityME(fin,ain,fout,aout,false)*sHat()*UnitRemoval::InvE2;
}

double MEfftoVH::helicityME(vector<SpinorWaveFunction>    & fin ,
			    vector<SpinorBarWaveFunction> & ain ,
			    vector<SpinorBarWaveFunction> & fout,
			    vector<SpinorWaveFunction>    & aout,
			    bool calc) const {
  // scale
  Energy2 mb2(scale());
  // matrix element to be stored
  ProductionMatrixElement menew(PDT::Spin1Half,PDT::Spin1Half,PDT::Spin0,
				PDT::Spin1Half,PDT::Spin1Half);
  // work out the id of the vector boson 
  int incharge = mePartonData()[0]->iCharge()+mePartonData()[1]->iCharge();
  tcPDPtr vec;
  if(incharge==0)     vec = _z0;
  else if(incharge>0) vec = _wplus;
  else                vec = _wminus;
  // vertex for vector boson
  AbstractFFVVertexPtr vertex = vec==_z0 ? _vertexFFZ : _vertexFFW;
  // wavefunction for the scalar
  ScalarWaveFunction higgs(meMomenta()[2],mePartonData()[2],1.,outgoing);
  // calculate the matrix element
  VectorWaveFunction inter[2];
  unsigned int ihel1,ihel2,ohel1,ohel2;
  Complex diag;
  double me(0.);
  for(ihel1=0;ihel1<2;++ihel1) {
    for(ihel2=0;ihel2<2;++ihel2) {
      // wavefunction for the intermediate 1st vector
      inter[0] = vertex->evaluate(mb2,1,vec,fin[ihel1],ain[ihel2]);
      // after the emission of the higgs
      inter[1] = _vertexWWH->evaluate(mb2,1,vec,inter[0],higgs);
      // boson decay piece
      for(ohel1=0;ohel1<2;++ohel1) {
	for(ohel2=0;ohel2<2;++ohel2) {
	  diag = vertex->evaluate(sqr(inter[1].particle()->mass()),
				  aout[ohel2],fout[ohel1],inter[1]);
	  me += norm(diag);
	  menew(ihel1,ihel2,0,ohel1,ohel2) = diag;
	}
      }
    }
  }
  // spin factor
  me *=0.25;
  tcPolarizedBeamPDPtr beam[2] = 
    {dynamic_ptr_cast<tcPolarizedBeamPDPtr>(mePartonData()[0]),
     dynamic_ptr_cast<tcPolarizedBeamPDPtr>(mePartonData()[1])};
  if( beam[0] || beam[1] ) {
    RhoDMatrix rho[2] = 
      {beam[0] ? beam[0]->rhoMatrix() : RhoDMatrix(mePartonData()[0]->iSpin()),
       beam[1] ? beam[1]->rhoMatrix() : RhoDMatrix(mePartonData()[1]->iSpin())};
    me = menew.average(rho[0],rho[1]);
  }
  // incoming colour factor
  if(mePartonData()[0]->coloured()) me /= 3.;
  // outgoing colour factor
  if(mePartonData()[3]->coloured()) me *= 3.;
  if(calc) _me.reset(menew);
  return me;
}

void MEfftoVH::constructVertex(tSubProPtr sub) {
  // extract the particles in the hard process
  ParticleVector hard;
  hard.push_back(sub->incoming().first);
  hard.push_back(sub->incoming().second);
  hard.push_back(sub->outgoing()[0]);
  hard.push_back(sub->outgoing()[1]);
  hard.push_back(sub->outgoing()[2]);
  // ensure right order
  if(hard[0]->id()<0) swap(hard[0],hard[1]);
  if(hard[3]->dataPtr()->iSpin()==PDT::Spin0) swap(hard[2],hard[3]);
  if(hard[4]->dataPtr()->iSpin()==PDT::Spin0) swap(hard[2],hard[4]);
  if(hard[3]->id()<0) swap(hard[3],hard[4]);
  vector<SpinorWaveFunction>    fin,aout;
  vector<SpinorBarWaveFunction> ain,fout;
  SpinorWaveFunction(   fin ,hard[0],incoming,false,true);
  SpinorBarWaveFunction(ain ,hard[1],incoming,false,true);
  ScalarWaveFunction(        hard[2],outgoing,true);
  SpinorBarWaveFunction(fout,hard[3],outgoing,true ,true);
  SpinorWaveFunction(   aout,hard[4],outgoing,true ,true);
  helicityME(fin,ain,fout,aout,true);
  // construct the vertex
  HardVertexPtr hardvertex=new_ptr(HardVertex());
  // set the matrix element for the vertex
  hardvertex->ME(_me);
  // set the pointers and to and from the vertex
  for(unsigned int ix=0;ix<5;++ix) {
    tcSpinPtr spin = hard[ix]->spinInfo();
    if(ix<2) {
      tcPolarizedBeamPDPtr beam = 
	dynamic_ptr_cast<tcPolarizedBeamPDPtr>(hard[ix]->dataPtr());
      if(beam) spin->rhoMatrix() = beam->rhoMatrix();
    }
    spin->productionVertex(hardvertex);
  }
}

bool MEfftoVH::generateKinematics(const double * r) {
  using Constants::pi;
  // workout the ID of the vector boson
  tcPDPtr vec = mePartonData()[0]->iCharge()+mePartonData()[1]->iCharge()!=0
    ? _wplus : _z0;
  // order determined randomly
  Energy e = sqrt(sHat())/2.0;
  Energy mh(_mh),mv;
  double jac(1.);
  if(UseRandom::rndbool()) {
    double rhomax,rhomin;
    // generate the mass of the Higgs
    if(_shapeopt!=0) {
      Energy mhmax = min(2.*e-vec->massMin(),mePartonData()[2]->massMax());
      Energy mhmin = max(ZERO               ,mePartonData()[2]->massMin());
      if(mhmax<=mhmin) return false;
      rhomin = atan2((sqr(mhmin)-sqr(_mh)), _mh*_wh);
      rhomax = atan2((sqr(mhmax)-sqr(_mh)), _mh*_wh);
      mh = sqrt(_mh*_wh*tan(rhomin+r[3]*(rhomax-rhomin))+sqr(_mh));
      jac *= rhomax-rhomin;
    }
    // generate the mass of the vector boson
    Energy2 mvmax2 = sqr(min(2.*e-mh,vec->massMax()));
    Energy2 mvmin2 = sqr(vec->massMin());
    if(mvmax2<=mvmin2) return false; 
    rhomin = atan2((mvmin2-sqr(vec->mass())), vec->mass()*vec->width());
    rhomax = atan2((mvmax2-sqr(vec->mass())), vec->mass()*vec->width());
    mv = sqrt(vec->mass()*vec->width()*tan(rhomin+r[1]*(rhomax-rhomin))
	      +sqr(vec->mass()));
    jac *= rhomax-rhomin;
  }
  else {
    // generate the mass of the vector boson
    Energy2 mvmax2 = sqr(min(2.*e,vec->massMax()));
    Energy2 mvmin2 = sqr(vec->massMin());
    if(mvmax2<=mvmin2) return false; 
    double rhomin = atan2((mvmin2-sqr(vec->mass())), vec->mass()*vec->width());
    double rhomax = atan2((mvmax2-sqr(vec->mass())), vec->mass()*vec->width());
    mv = sqrt(vec->mass()*vec->width()*tan(rhomin+r[1]*(rhomax-rhomin))
	      +sqr(vec->mass()));
    jac *= rhomax-rhomin;
    // generate the mass of the Higgs
    if(_shapeopt!=0) {
      Energy mhmax = min(2.*e-mv,mePartonData()[2]->massMax());
      Energy mhmin = max(ZERO ,mePartonData()[2]->massMin());
      if(mhmax<=mhmin) return false;
      rhomin = atan2((sqr(mhmin)-sqr(_mh)), _mh*_wh);
      rhomax = atan2((sqr(mhmax)-sqr(_mh)), _mh*_wh);
      mh = sqrt(_mh*_wh*tan(rhomin+r[3]*(rhomax-rhomin))+sqr(_mh));
      jac *= rhomax-rhomin;
    }
  }
  if(mh+mv>2.*e) return false;
  // assign masses
  meMomenta()[2].setMass(mh);
  for(unsigned int ix=3;ix<5;++ix) 
    meMomenta()[ix] = Lorentz5Momentum(mePartonData()[ix]->generateMass());
  Energy q = ZERO;
  Lorentz5Momentum pvec(mv);
  try {
    q = SimplePhaseSpace::
      getMagnitude(sHat(), meMomenta()[2].mass(), mv);
  } 
  catch ( ImpossibleKinematics ) {
    return false;
  }
	
  Energy ptmin = max(lastCuts().minKT(mePartonData()[2]),
   		     lastCuts().minKT(vec));	    
  Energy2 m22  = meMomenta()[2].mass2();
  Energy2 m32  = pvec          .mass2();
  Energy2 e0e2 = 2.0*e*sqrt(sqr(q) + m22);
  Energy2 e1e2 = 2.0*e*sqrt(sqr(q) + m22);
  Energy2 e0e3 = 2.0*e*sqrt(sqr(q) + m32);
  Energy2 e1e3 = 2.0*e*sqrt(sqr(q) + m32);
  Energy2 pq   = 2.0*e*q;
  double ctmin = -1.0,ctmax = 1.0;
  Energy2 thmin = lastCuts().minTij(mePartonData()[0], mePartonData()[2]);
  if ( thmin > ZERO ) ctmax = min(ctmax, (e0e2 - m22 - thmin)/pq);

  thmin = lastCuts().minTij(mePartonData()[1], mePartonData()[2]);
  if ( thmin > ZERO ) ctmin = max(ctmin, (thmin + m22 - e1e2)/pq);

  thmin = lastCuts().minTij(mePartonData()[1], mePartonData()[3]);
  if ( thmin > ZERO ) ctmax = min(ctmax, (e1e3 - m32 - thmin)/pq);

  thmin = lastCuts().minTij(mePartonData()[0], mePartonData()[3]);
  if ( thmin > ZERO ) ctmin = max(ctmin, (thmin + m32 - e0e3)/pq);
  if ( ptmin > ZERO ) {
    double ctm = 1.0 - sqr(ptmin/q);
    if ( ctm <= 0.0 ) return false;
    ctmin = max(ctmin, -sqrt(ctm));
    ctmax = min(ctmax, sqrt(ctm));
  }

  if ( ctmin >= ctmax ) return false;
    
  double cth = getCosTheta(ctmin, ctmax, r[0]);
  
  Energy pt = q*sqrt(1.0-sqr(cth));
  double phi = UseRandom::rnd()*2.0*pi;
  meMomenta()[2].setX(pt*sin(phi));
  meMomenta()[2].setY(pt*cos(phi));
  meMomenta()[2].setZ(q*cth);
  
  pvec          .setX(-pt*sin(phi));
  pvec          .setY(-pt*cos(phi));
  pvec          .setZ(-q*cth);
  
  meMomenta()[2].rescaleEnergy();
  pvec          .rescaleEnergy();
  // decay of the vector boson
  bool test=Kinematics::twoBodyDecay(pvec,meMomenta()[3].mass(),
				     meMomenta()[4].mass(),
				     -1.+2*r[2],r[3]*2.*pi,
				     meMomenta()[3],meMomenta()[4]);
  if(!test) return false;
  // check cuts
  vector<LorentzMomentum> out;
  tcPDVector tout;
  for(unsigned int ix=2;ix<5;++ix) {
    out .push_back(meMomenta()[ix]);
    tout.push_back(mePartonData()[ix]);
  }
  if ( !lastCuts().passCuts(tout, out, mePartonData()[0], mePartonData()[1]) )
    return false;
  // jacobian factors
  // main piece
  jacobian((pq/sHat())*pi*jacobian());
  // mass piece
  jacobian(jac*jacobian());
  // decay piece
  Energy p2 = Kinematics::pstarTwoBodyDecay(mv,meMomenta()[3].mass(),
					    meMomenta()[4].mass());
  jacobian(p2/mv/8./sqr(pi)*jacobian());
  // jacobian factor for the gauge boson
  jacobian((sqr(sqr(mv)-sqr(vec->mass()))+sqr(vec->mass()*vec->width()))/
	   (vec->mass()*vec->width())*jacobian()/sHat());
  return true;
}

CrossSection MEfftoVH::dSigHatDR() const {
  using Constants::pi;
  // jacobian factor for the higgs
  InvEnergy2 bwfact(ZERO);
  Energy moff =meMomenta()[2].mass();
  if(_shapeopt==1) {
    tcPDPtr h0 = mePartonData()[2]->iSpin()==PDT::Spin0 ?
      mePartonData()[2] : mePartonData()[3];
    bwfact = h0->generateWidth(moff)*moff/pi/
      (sqr(sqr(moff)-sqr(_mh))+sqr(_mh*_wh));
  }
  else if(_shapeopt==2) {
    bwfact = _hmass->BreitWignerWeight(moff);
  }
  double jac1 = _shapeopt!=0 ? 
    double(bwfact*(sqr(sqr(moff)-sqr(_mh))+sqr(_mh*_wh))/(_mh*_wh)) : 1.;
  // answer
  return jac1*me2()*jacobian()/(16.0*sqr(pi)*sHat())*sqr(hbarc);
}

double MEfftoVH::getCosTheta(double ctmin, double ctmax, double r) {
  double cth = 0.0;
  if ( ctmin <= -1.0 && ctmax >= 1.0 ) {
    jacobian((ctmax - ctmin));
    cth = ctmin + r*jacobian();
  } else if ( ctmin <= -1.0 ) {
    cth = 1.0 - (1.0 - ctmax)*pow((1.0 - ctmin)/(1.0 - ctmax), r);
    jacobian(log((1.0 - ctmin)/(1.0 - ctmax))*(1.0 - cth));
  } else if ( ctmax >= 1.0 ) {
    cth = -1.0 + (1.0 + ctmin)*pow((1.0 + ctmax)/(1.0 + ctmin), r);
    jacobian(log((1.0 + ctmax)/(1.0 + ctmin))*(1.0 + cth));
  } else {
    double zmin = 0.5*(1.0 - ctmax);
    double zmax = 0.5*(1.0 - ctmin);
    double A1 = (2.0*zmax - 1.0)/(zmax*(1.0-zmax));
    double A0 = (2.0*zmin - 1.0)/(zmin*(1.0-zmin));
    double A = r*(A1 - A0) + A0;
    double z = A < 2.0? 2.0/(sqrt(sqr(A) + 4.0) + 2 - A):
      0.5*(A - 2.0 + sqrt(sqr(A) + 4.0))/A;
    cth = 1.0 - 2.0*z;
    jacobian(2.0*(A1 - A0)*sqr(z)*sqr(1.0 - z)/(sqr(z) + sqr(1.0 - z)));
  }
  return cth;
}