File: pdbfilter.py

package info (click to toggle)
hhsuite 3.3.0%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 16,076 kB
  • sloc: cpp: 24,689; perl: 5,022; python: 3,017; ansic: 2,556; sh: 110; makefile: 109
file content (277 lines) | stat: -rwxr-xr-x 8,648 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#!/usr/bin/env python3

"""
Created in Jun 2016

@author: Harald Voehringer
"""


from itertools import groupby
from collections import namedtuple, defaultdict
import textwrap

DEBUG = False
FASTA = namedtuple('FASTA', ['header', 'seq'])
PDBDATA = namedtuple('PDBDATA', ['entry', 'res', 'rfr', 'comp', 'met'])

def as_pairs(fasta):
    """ Reads in fasta headers as defined """

    for header, group in groupby(fasta, lambda x: x[0] == '>'):
        if header:
            line = next(group)
            identifier = line.split(' ')[0].split('>')[1]
            header_line = str(line.strip())

        else:
            sequence = ''.join(line.strip() for line in group).upper()
            data = FASTA(header_line, sequence)

            yield identifier, data
 
def read_fasta(fasta_file):
    """ Reads in fasta sequences with help of the as_pairs function."""
    fasta_dic = dict()
    duplicate = 0
    
    with open(fasta_file) as fasta:
        for title, sequence in as_pairs(fasta):
            if title not in fasta_dic:
                fasta_dic[title] = sequence
            else:
                duplicate +=1
    
    if duplicate != 0:
        print ('! Warning found duplicate {num} fasta.'.format(
            num = duplicate))
        
    return fasta_dic

def read_fasta_annotations(fname):
    """ Reads the information about resolution, R-free and completness which 
    be outputed by cif2fasta."""

    annotations = dict()

    with open(fname) as fh:
        for line in fh:
            if len(line) > 0 and line[0] == '#':
                continue

            identifier, res, r_free, comp, method = line.strip().split('\t')

            try:
                res = float(res)
            except ValueError:
                res = None

            try:
                r_free = float(r_free)
            except ValueError:
                r_free = None

            try:
                comp = float(comp)
            except ValueError:
                comp = None

            annotations[identifier] = PDBDATA(identifier, res, r_free, comp, method)

    return annotations

def read_cluster(cluster_file):
    """ Reads in the clusters (this is the output of MMseqs). """
    cluster = defaultdict(set)

    with open(cluster_file) as fh:
        for line in fh:
            exemplar, node = line.split()
            
            if node in cluster[exemplar]:
                raise Exception('! Please check the clustering procedure: {n} was found twice in cluster {e}.'.format(
                    n = node,
                    e = exemplar))
            else:
                cluster[exemplar].add(node)

    return cluster

def read_pdblist(in_file):

    pdb_list = set()
    
    with open(in_file) as fh:
        for line in fh:
            if line.startswith('#'):
                continue

            strip_line = line.strip()
            pdb_code = strip_line.split('_')[0]

            # this is a very very basic check
            if len(pdb_code) != 4:
                print ('! Warning: {line} seems to be an incorrect identifer. Skipping it.'.format(
                    line = strip_line))
                continue
            
            pdb = strip_line.upper()
            pdb_list.add(pdb)

    return pdb_list

def select_sequences(clusters, annotations):

    selected_sequences = set()

    for idx, cluster in enumerate(clusters):
        
        nodes = [ annotations[entry] for entry in clusters[cluster] ]
        
        if DEBUG:
            print ('Processing Cluster {c} ({i}): {m}'.format(
                c = cluster,
                i = idx, 
                m = ', '.join([x.entry for x in nodes])))

        # select the best entries of the cluster
        best_res = float('inf')
        best_entry_res = None

        best_rfr = float('inf')
        best_entry_rfr = None

        best_comp = -float('inf')
        best_entry_comp = None

        # iterate through each entry in nodes while selecting the representative sequence
        for node in nodes:
            
            if (node.res is not None) and (node.res < best_res):
                best_res = node.res
                best_entry_res = node.entry

            if (node.rfr is not None) and (node.rfr < best_rfr):
                best_rfr = node.rfr
                best_entry_rfr = node.entry

            if (node.comp is not None) and (node.comp > best_comp):
                best_comp = node.comp
                best_entry_comp = node.entry

        if best_entry_res is not None:
            selected_sequences.add(best_entry_res)
            
            if DEBUG:
                print (' - Selected {n} (best resolution = {r}).'.format(
                    n = best_entry_res,
                    r = best_res))

        if best_entry_rfr is not None:
            selected_sequences.add(best_entry_rfr)
            
            if DEBUG:
                print (' - Selected {n} (best R-free = {r}).'.format(
                    n = best_entry_rfr,
                    r = best_rfr))
        
        if best_entry_comp is not None:
            selected_sequences.add(best_entry_comp)
            
            if DEBUG:
                print (' - Selected {n} (best completness = {r}).'.format(
                    n = best_entry_comp,
                    r = best_comp))    

        if best_entry_res == None and best_entry_rfr == None and best_entry_comp == None:
            print ('! Warning: Did not find any representative entry for cluster {c}.'.format(
                c = cluster))
    
    return selected_sequences

def write_sequences(out_file, fasta_db, selected_sequences):
    """ Writes selected sequences to a fasta file."""
    with open(out_file, 'w') as fh:
        for seq in selected_sequences:
            
            fasta_entry = '{h}\n{seq}\n'.format(
                h = fasta_db[seq].header,
                seq = '\n'.join(textwrap.wrap(fasta_db[seq].seq, 80)))
            
            fh.write(fasta_entry)

def arg():
    import argparse
    description = """
    pdbfilter.py selects from sequence clusters (determined by MMSeqs) the sequences 
    which have the best resolution, R-free factor and/or completness and writes them to a fasta file. 
    """.replace('\n', '')
    
    epilog = '2016 Harald Voehringer'
    # Initiate a ArgumentParser Class
    parser = argparse.ArgumentParser(description = description, epilog = epilog)
    
    # Call add_options to the parser
    parser.add_argument('fasta', help = 'input fasta file (created by cif2fasta.py)', metavar = 'FILE')    
    parser.add_argument('cluster', help = 'sequence clusters (MMseqs)', metavar = 'FILE')
    parser.add_argument('annotations', help = 'annotations file (created by cif2fasta using the -p flag, contains information about resolution, R-free and completness of sequences).', metavar = 'FILE')
    parser.add_argument('out_file', help = 'output fasta file', metavar = 'FILE')
    parser.add_argument('-i', '--include', help = 'include PDB chains', metavar = 'FILE')
    parser.add_argument('-r', '--remove', help = 'exclude PDB chains', metavar = 'FILE')

    parser.add_argument('-v', '--verbose', action = 'store_true', help = 'verbose mode')


    return parser


def main():
    import sys
    parser = arg()
    args = parser.parse_args(sys.argv[1:])

    global DEBUG
    
    if args.verbose:
        DEBUG = True

    fasta = read_fasta(args.fasta)
    clu70 = read_cluster(args.cluster)
    annot = read_fasta_annotations(args.annotations)

    print ("Found {i} clusters.".format(
        i = len(clu70.keys())))

    # choose representative sequences from clusters
    selection = select_sequences(clu70, annot)

    # make sure that pdbs specified in the argument are included
    if args.include:
        to_include = read_pdblist(args.include)
        for pdb in to_include:
            if pdb in fasta.keys():
                if pdb not in selection:
                    if DEBUG:
                        print ('Adding {p}.'.format(
                            p = pdb))
                    selection.add(pdb)
            else:
                print ('! Warning: {p} was not found in input fasta.'.format(
                    p = pdb))

    # removes entries
    if args.remove:
        to_remove = read_pdblist(args.remove)
        for pdb in to_remove:
            if pdb in selection:
                if DEBUG:
                    print ('Removing {p}.'.format(
                        p = pdb))
                selection.remove(pdb)
        
    # write them to file
    write_sequences(args.out_file, fasta, selection)


if __name__ == "__main__":
    main()