File: paper.bib

package info (click to toggle)
hickle 5.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 956 kB
  • sloc: python: 5,578; sh: 17; makefile: 15
file content (84 lines) | stat: -rw-r--r-- 2,989 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
@article{astropy:2018,
	Adsurl = {https://ui.adsabs.harvard.edu/#abs/2018AJ....156..123T},
	Author = {{Price-Whelan}, A.~M. and {Sip{'{o}}cz}, B.~M. and {G{"u}nther}, H.~M. and {Lim}, P.~L. and others},
	Doi = {10.3847/1538-3881/aabc4f},
	Eid = {123},
	Journal = {aj},
	Pages = {123},
	Title = {{The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package}},
	Volume = {156},
	Year = 2018}

@book{collette:2014,
	Author = {Andrew Collette},
	Keywords = {python, hdf5},
	Publisher = {O'Reilly},
	Title = {Python and HDF5},
	Year = {2013}}

@article{Durant:2017,
	Author = {Durant, Thomas J.S. and Olson, Eben M. and Schulz, Wade L. and Torres, Richard},
	Doi = {10.1373/clinchem.2017.276345},
	Eprint = {http://clinchem.aaccjnls.org/content/63/12/1847.full.pdf},
	Issn = {0009-9147},
	Journal = {Clinical Chemistry},
	Number = {12},
	Pages = {1847--1855},
	Publisher = {Clinical Chemistry},
	Title = {Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes},
	Url = {http://clinchem.aaccjnls.org/content/63/12/1847},
	Volume = {63},
	Year = {2017},
}

@webpage{hdf5,
	Lastchecked = {November 2018},
	Url = {https://support.hdfgroup.org/HDF5/doc/index.html}}

@article{numpy,
	Author = {T. E. Oliphant},
	Doi = {10.1109/MCSE.2007.58},
	Issn = {1521-9615},
	Journal = {Computing in Science Engineering},
	Month = {May},
	Number = {3},
	Pages = {10-20},
	Title = {Python for Scientific Computing},
	Volume = {9},
	Year = {2007}}

@article{Price:2018,
	Adsnote = {Provided by the SAO/NASA Astrophysics Data System},
	Adsurl = {https://ui.adsabs.harvard.edu/#abs/2018MNRAS.478.4193P},
	Author = {{Price}, D.~C. and {Greenhill}, L.~J. and {Fialkov}, A. and {Bernardi}, G. and others},
	Doi = {10.1093/mnras/sty1244},
	Journal = {Monthly Notices of the Royal Astronomy Society},
	Pages = {4193-4213},
	Title = {{Design and characterization of the Large-aperture Experiment to Detect the Dark Age (LEDA) radiometer systems}},
	Volume = {478},
	Year = 2018,
	Bdsk-Url-1 = {https://doi.org/10.1093/mnras/sty1244}}

@phdthesis{Raffel:2016,
	Author = {Colin Raffel},
	School = {Columbia University},
	Title = {Learning-Based Methods for Comparing Sequences, with Applications to Audio-to-MIDI Alignment and Matching},
	Year = {2016},
	Doi = {https://doi.org/10.7916/D8N58MHV}}

@inproceedings{Zhang:2016,
	Acmid = {2934880},
	Address = {New York, NY, USA},
	Author = {Zhang, Hong and Chen, Li and Yi, Bairen and Chen, Kai and Chowdhury, Mosharaf and Geng, Yanhui},
	Booktitle = {Proceedings of the 2016 ACM SIGCOMM Conference},
	Doi = {10.1145/2934872.2934880},
	Isbn = {978-1-4503-4193-6},
	Keywords = {Coflow;, data-intensive applications;, datacenter networks},
	Location = {Florianopolis, Brazil},
	Numpages = {14},
	Pages = {160--173},
	Publisher = {ACM},
	Series = {SIGCOMM '16},
	Title = {CODA: Toward Automatically Identifying and Scheduling Coflows in the Dark},
	Url = {http://doi.acm.org/10.1145/2934872.2934880},
	Year = {2016}}