File: directsound.cpp

package info (click to toggle)
higan 106-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 9,640 kB
  • sloc: cpp: 108,736; ansic: 809; makefile: 22; sh: 7
file content (179 lines) | stat: -rw-r--r-- 5,430 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include <dsound.h>

struct AudioDirectSound : Audio {
  AudioDirectSound() { initialize(); }
  ~AudioDirectSound() { terminate(); }

  auto availableDevices() -> string_vector {
    return {"Default"};
  }

  auto availableFrequencies() -> vector<double> {
    return {44100.0, 48000.0, 96000.0};
  }

  auto availableLatencies() -> vector<uint> {
    return {40, 60, 80, 100};
  }

  auto availableChannels() -> vector<uint> {
    return {2};
  }

  auto ready() -> bool { return _ready; }
  auto blocking() -> bool { return _blocking; }
  auto channels() -> uint { return _channels; }
  auto frequency() -> double { return _frequency; }
  auto latency() -> uint { return _latency; }

  auto setBlocking(bool blocking) -> bool {
    if(_blocking == blocking) return true;
    _blocking = blocking;
    return true;
  }

  auto setFrequency(double frequency) -> bool {
    if(_frequency == frequency) return true;
    _frequency = frequency;
    return initialize();
  }

  auto setLatency(uint latency) -> bool {
    if(_latency == latency) return true;
    _latency = latency;
    return initialize();
  }

  auto clear() -> void {
    if(!ready()) return;

    _ringRead = 0;
    _ringWrite = _rings - 1;
    _ringDistance = _rings - 1;

    if(_buffer) memory::fill(_buffer, _period * _rings * 4);
    _offset = 0;

    if(!_secondary) return;
    _secondary->Stop();
    _secondary->SetCurrentPosition(0);

    void* output;
    DWORD size;
    _secondary->Lock(0, _period * _rings * 4, &output, &size, 0, 0, 0);
    memory::fill(output, size);
    _secondary->Unlock(output, size, 0, 0);

    _secondary->Play(0, 0, DSBPLAY_LOOPING);
  }

  auto output(const double samples[]) -> void {
    if(!ready()) return;

    _buffer[_offset]  = (uint16_t)sclamp<16>(samples[0] * 32767.0) <<  0;
    _buffer[_offset] |= (uint16_t)sclamp<16>(samples[1] * 32767.0) << 16;
    if(++_offset < _period) return;
    _offset = 0;

    if(_blocking) {
      //wait until playback buffer has an empty ring to write new audio data to
      while(_ringDistance >= _rings - 1) {
        DWORD position;
        _secondary->GetCurrentPosition(&position, 0);
        uint ringActive = position / (_period * 4);
        if(ringActive == _ringRead) continue;

        //subtract number of played rings from ring distance counter
        _ringDistance -= (_rings + ringActive - _ringRead) % _rings;
        _ringRead = ringActive;

        if(_ringDistance < 2) {
          //buffer underflow; set max distance to recover quickly
          _ringDistance = _rings - 1;
          _ringWrite = (_rings + _ringRead - 1) % _rings;
          break;
        }
      }
    }

    _ringWrite = (_ringWrite + 1) % _rings;
    _ringDistance = (_ringDistance + 1) % _rings;

    void* output;
    DWORD size;
    if(_secondary->Lock(_ringWrite * _period * 4, _period * 4, &output, &size, 0, 0, 0) == DS_OK) {
      memory::copy(output, _buffer, _period * 4);
      _secondary->Unlock(output, size, 0, 0);
    }
  }

private:
  auto initialize() -> bool {
    terminate();

    _rings = 8;
    _period = _frequency * _latency / _rings / 1000.0 + 0.5;
    _buffer = new uint32_t[_period * _rings];
    _offset = 0;

    if(DirectSoundCreate(0, &_interface, 0) != DS_OK) return terminate(), false;
    _interface->SetCooperativeLevel(GetDesktopWindow(), DSSCL_PRIORITY);

    DSBUFFERDESC primaryDescription = {};
    primaryDescription.dwSize = sizeof(DSBUFFERDESC);
    primaryDescription.dwFlags = DSBCAPS_PRIMARYBUFFER;
    primaryDescription.dwBufferBytes = 0;
    primaryDescription.lpwfxFormat = 0;
    _interface->CreateSoundBuffer(&primaryDescription, &_primary, 0);

    WAVEFORMATEX waveFormat = {};
    waveFormat.wFormatTag = WAVE_FORMAT_PCM;
    waveFormat.nChannels = _channels;
    waveFormat.nSamplesPerSec = (uint)_frequency;
    waveFormat.wBitsPerSample = 16;
    waveFormat.nBlockAlign = waveFormat.nChannels * waveFormat.wBitsPerSample / 8;
    waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
    _primary->SetFormat(&waveFormat);

    DSBUFFERDESC secondaryDescription = {};
    secondaryDescription.dwSize = sizeof(DSBUFFERDESC);
    secondaryDescription.dwFlags = DSBCAPS_GETCURRENTPOSITION2 | DSBCAPS_CTRLFREQUENCY | DSBCAPS_GLOBALFOCUS | DSBCAPS_LOCSOFTWARE;
    secondaryDescription.dwBufferBytes = _period * _rings * 4;
    secondaryDescription.guid3DAlgorithm = GUID_NULL;
    secondaryDescription.lpwfxFormat = &waveFormat;
    _interface->CreateSoundBuffer(&secondaryDescription, &_secondary, 0);
    _secondary->SetFrequency((uint)_frequency);
    _secondary->SetCurrentPosition(0);

    _ready = true;
    clear();
    return true;
  }

  auto terminate() -> void {
    _ready = false;
    if(_buffer) { delete[] _buffer; _buffer = nullptr; }
    if(_secondary) { _secondary->Stop(); _secondary->Release(); _secondary = nullptr; }
    if(_primary) { _primary->Stop(); _primary->Release(); _primary = nullptr; }
    if(_interface) { _interface->Release(); _interface = nullptr; }
  }

  bool _ready = false;
  bool _blocking = true;
  uint _channels = 2;
  double _frequency = 48000.0;
  uint _latency = 40;

  LPDIRECTSOUND _interface = nullptr;
  LPDIRECTSOUNDBUFFER _primary = nullptr;
  LPDIRECTSOUNDBUFFER _secondary = nullptr;

  uint32_t* _buffer = nullptr;
  uint _offset = 0;

  uint _period = 0;
  uint _rings = 0;
  uint _ringRead = 0;
  uint _ringWrite = 0;
  int _ringDistance = 0;
};