File: call_highs_from_python.py

package info (click to toggle)
highs 1.12.0%2Bds1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,604 kB
  • sloc: cpp: 133,006; ansic: 12,649; python: 4,167; f90: 1,113; cs: 974; lisp: 151; makefile: 59; perl: 46; sh: 38
file content (391 lines) | stat: -rw-r--r-- 11,945 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# The paths to MPS file instances assumes that this is run in the
# root directory of HiGHS

import numpy as np
import highspy

hscb = highspy.cb 

# Constants for iteration limits or objective targets, adjust as required
SIMPLEX_ITERATION_LIMIT = 100
IPM_ITERATION_LIMIT = 100
EGOUT_OBJECTIVE_TARGET = 610.0

h = highspy.Highs()

# h.setOptionValue("log_to_console", True)

inf = highspy.kHighsInf
alt_inf = h.getInfinity()
print('highspy.kHighsInf = ', inf,
      'h.getInfinity() = ', alt_inf)

# ~~~
# Read in and solve avgas
h.readModel("check/instances/avgas.mps")

# h.writeModel("ml.mps")

h.run()
lp = h.getLp()
num_nz = h.getNumNz()
print("LP has ", lp.num_col_,
      " columns", lp.num_row_,
      " rows and ", num_nz, " nonzeros.")

# ~~~
# Clear so that incumbent model is empty
h.clear()

# Now define the blending model as a HighsLp instance
lp = highspy.HighsLp()
lp.num_col_ = 2
lp.num_row_ = 2
lp.sense_ = highspy.ObjSense.kMaximize
lp.col_cost_ = np.array([8, 10], dtype=np.double)
lp.col_lower_ = np.array([0, 0], dtype=np.double)
lp.col_upper_ = np.array([inf, inf], dtype=np.double)
lp.row_lower_ = np.array([-inf, -inf], dtype=np.double)
lp.row_upper_ = np.array([120, 210], dtype=np.double)
lp.a_matrix_.start_ = np.array([0, 2, 4])
lp.a_matrix_.index_ = np.array([0, 1, 0, 1])
lp.a_matrix_.value_ = np.array([0.3, 0.7, 0.5, 0.5], dtype=np.double)
h.passModel(lp)

# Solve
h.run()

# Print solution
solution = h.getSolution()
basis = h.getBasis()
info = h.getInfo()
# basis.col_status and basis.row_status are already lists, but
# accessing values in solution.col_value and solution.row_value
# directly is very inefficient, so convert them to lists
col_status = basis.col_status
row_status = basis.row_status
col_value = list(solution.col_value)
row_value = list(solution.row_value)
model_status = h.getModelStatus()
print("Model status = ", h.modelStatusToString(model_status))
print("Optimal objective = ", info.objective_function_value)
print("Iteration count = ", info.simplex_iteration_count)
print(
    "Primal solution status = ", h.solutionStatusToString(
        info.primal_solution_status)
)
print("Dual solution status = ",
      h.solutionStatusToString(info.dual_solution_status))
print("Basis validity = ", h.basisValidityToString(info.basis_validity))
num_var = h.getNumCol()
num_row = h.getNumRow()
print("Variables")
for icol in range(num_var):
    print(icol, col_value[icol],
          h.basisStatusToString(col_status[icol]))
print("Constraints")
for irow in range(num_row):
    print(irow, row_value[irow],
          h.basisStatusToString(row_status[irow]))

# ~~~
# Clear so that incumbent model is empty
h.clear()

# Now define the test-semi-definite0 model (from TestQpSolver.cpp) 
# as a HighsModel instance
model = highspy.HighsModel()
model.lp_.model_name_ = "semi-definite"
model.lp_.num_col_ = 3
model.lp_.num_row_ = 1
model.lp_.col_cost_ = np.array([1.0, 1.0, 2.0], dtype=np.double)
model.lp_.col_lower_ = np.array([0, 0, 0], dtype=np.double)
model.lp_.col_upper_ = np.array([inf, inf, inf], dtype=np.double)
model.lp_.row_lower_ = np.array([2], dtype=np.double)
model.lp_.row_upper_ = np.array([inf], dtype=np.double)
model.lp_.a_matrix_.format_ = highspy.MatrixFormat.kColwise
model.lp_.a_matrix_.start_ = np.array([0, 1, 2, 3])
model.lp_.a_matrix_.index_ = np.array([0, 0, 0])
model.lp_.a_matrix_.value_ = np.array([1.0, 1.0, 1.0], dtype=np.double)
model.hessian_.dim_ = model.lp_.num_col_
model.hessian_.start_ = np.array([0, 2, 2, 3])
model.hessian_.index_ = np.array([0, 2, 2])
model.hessian_.value_ = np.array([2.0, -1.0, 1.0], dtype=np.double)

print("test-semi-definite0 as HighsModel")
h.passModel(model)
h.run()

# ~~~
# Clear so that incumbent model is empty
h.clear()
num_col = 3
num_row = 1
sense = highspy.ObjSense.kMinimize
offset = 0
col_cost = np.array([1.0, 1.0, 2.0], dtype=np.double)
col_lower = np.array([0, 0, 0], dtype=np.double)
col_upper = np.array([inf, inf, inf], dtype=np.double)
row_lower = np.array([2], dtype=np.double)
row_upper = np.array([inf], dtype=np.double)
a_matrix_format = highspy.MatrixFormat.kColwise
a_matrix_start = np.array([0, 1, 2, 3])
a_matrix_index = np.array([0, 0, 0])
a_matrix_value = np.array([1.0, 1.0, 1.0], dtype=np.double)
a_matrix_num_nz = a_matrix_start[num_col]
hessian_format = highspy.HessianFormat.kTriangular
hessian_start = np.array([0, 2, 2, 3])
hessian_index = np.array([0, 2, 2])
hessian_value = np.array([2.0, -1.0, 1.0], dtype=np.double)
hessian_num_nz = hessian_start[num_col]
integrality = np.array([0, 0, 0])

print("test-semi-definite0 as pointers")
h.passModel(
    num_col,
    num_row,
    a_matrix_num_nz,
    hessian_num_nz,
    a_matrix_format,
    hessian_format,
    sense,
    offset,
    col_cost,
    col_lower,
    col_upper,
    row_lower,
    row_upper,
    a_matrix_start,
    a_matrix_index,
    a_matrix_value,
    hessian_start,
    hessian_index,
    hessian_value,
    integrality,
)
h.run()
h.writeSolution("", 1)

# ~~~
# Clear so that incumbent model is empty
h.clear()
print("25fv47 as HighsModel")

h.readModel("check/instances/25fv47.mps")

h.presolve()
presolved_lp = h.getPresolvedLp()

# Create a HiGHS instance to solve the presolved LP
print('\nCreate Highs instance to solve presolved LP')
h1 = highspy.Highs()
h1.passModel(presolved_lp)

# Get and set options
options = h1.getOptions()
options.presolve = "off"
options.solver = "ipm"

h1.passOptions(options)

# can be used to check option values
# h1.writeOptions("")

h1.run()
solution = h1.getSolution()
basis = h1.getBasis()

print("Crossover, then postsolve using solution and basis from another instance")

h.postsolve(solution, basis)

# Get solution
info = h.getInfo()
model_status = h.getModelStatus()
print("Model status = ", h.modelStatusToString(model_status))
print("Optimal objective = ", info.objective_function_value)
print("Iteration count = ", info.simplex_iteration_count)

run_time = h.getRunTime()
print("Total HiGHS run time is ", run_time)

# Get an optimal basis

# Clear so that incumbent model is empty
h.clear()
print("25fv47 as HighsModel")

h.readModel("check/instances/25fv47.mps")

h.run()
simplex_iteration_count = h.getInfo().simplex_iteration_count
print("From initial basis, simplex iteration count =", simplex_iteration_count)
basis = h.getBasis()
h.clearSolver()

h.setBasis(basis)
h.run()
simplex_iteration_count = h.getInfo().simplex_iteration_count
print("From optimal basis, simplex iteration count =", simplex_iteration_count)
status = h.setBasis()
h.run()
simplex_iteration_count = h.getInfo().simplex_iteration_count
print("From logical basis, simplex iteration count =", simplex_iteration_count)


# Define a callback

def user_callback(
    callback_type,
    message,
    data_out,
    data_in,
    user_callback_data
):
    dev_run = True
    #dev_run = False

    # Callback for MIP Improving Solution
    if callback_type == hscb.HighsCallbackType.kCallbackMipImprovingSolution:
        # Assuming it is a list or array
        assert user_callback_data is not None, "User callback data is None!"

        if dev_run:
            print(f"userCallback(type {callback_type}; "
                  f"data {user_callback_data:.4g}): {message} "
                  f"with objective {data_out.objective_function_value:.4g}")
            print(f"and solution[0] = {data_out.mip_solution[0]}")
            print(f"and solution[1] = {data_out.mip_solution[1]}")

        # Check and update the objective function value
        assert (
            user_callback_data >= data_out.objective_function_value
        ), "Objective function value is invalid!"
        user_callback_data = data_out.objective_function_value

    else:
        # Various other callback types
        if callback_type == hscb.HighsCallbackType.kCallbackLogging:
            if dev_run:
                print(f"userInterruptCallback(type {callback_type}): {message}")

        elif callback_type == hscb.HighsCallbackType.kCallbackSimplexInterrupt:
            if dev_run:
                print(f"userInterruptCallback(type {callback_type}): {message}")
                print("with iteration count = ", 
                      data_out.simplex_iteration_count)

            data_in.user_interrupt = (
                data_out.simplex_iteration_count > SIMPLEX_ITERATION_LIMIT
            )

        elif callback_type == hscb.HighsCallbackType.kCallbackIpmInterrupt:
            if dev_run:
                print(f"userInterruptCallback(type {callback_type}): {message}")
                print(f"with iteration count = {data_out.ipm_iteration_count}")

            data_in.user_interrupt = (
                data_out.ipm_iteration_count > IPM_ITERATION_LIMIT
            )

        elif callback_type == hscb.HighsCallbackType.kCallbackMipInterrupt:
            if dev_run:
                print(f"userInterruptCallback(type {callback_type}; "
                  f"data {user_callback_data:.4g}): {message} "
                  f"with objective {data_out.objective_function_value:.4g}")
                print(f"Dual bound = {data_out.mip_dual_bound:.4g}")
                print(f"Primal bound = {data_out.mip_primal_bound:.4g}")
                print(f"Gap = {data_out.mip_gap:.4g}")

            data_in.user_interrupt = (
                data_out.objective_function_value < user_callback_data
            )


# Define model
h.addVar(-inf, inf)
h.addVar(-inf, inf)
h.changeColsCost(2, np.array([0, 1]), np.array([0, 1], dtype=np.double))
num_cons = 2
lower = np.array([2, 0], dtype=np.double)
upper = np.array([inf, inf], dtype=np.double)
num_new_nz = 4
starts = np.array([0, 2])
indices = np.array([0, 1, 0, 1])
values = np.array([-1, 1, 1, 1], dtype=np.double)
h.addRows(num_cons, lower, upper, num_new_nz, starts, indices, values)


# Set callback and run
h.setCallback(user_callback, None)
h.startCallback(hscb.HighsCallbackType.kCallbackLogging)

h.run()
h.stopCallback(hscb.HighsCallbackType.kCallbackLogging)

# Get solution
num_var = h.getNumCol()
solution = h.getSolution()
basis = h.getBasis()
info = h.getInfo()
#
col_status = basis.col_status
col_value = list(solution.col_value)
# basis.col_status is already a list, but accessing values in
# solution.col_value directly is very inefficient, so convert it to a
# list
model_status = h.getModelStatus()
print("Model status = ", h.modelStatusToString(model_status))
print("Optimal objective = ", info.objective_function_value)
print("Iteration count = ", info.simplex_iteration_count)
print(
    "Primal solution status = ", h.solutionStatusToString(
        info.primal_solution_status)
)
print("Dual solution status = ",
      h.solutionStatusToString(info.dual_solution_status))
print("Basis validity = ", h.basisValidityToString(info.basis_validity))
print("Variables:")
for icol in range(0, 5):
    print(icol, col_value[icol],
          h.basisStatusToString(col_status[icol]))
print("...")
for icol in range(num_var-2, num_var):
    print(icol, col_value[icol],
          h.basisStatusToString(col_status[icol]))

# ~~~
# Clear so that incumbent model is empty
h.clear()

# Test MIP callbacks
print("\negout as HighsModel")

h.setOptionValue("output_flag", False);
h.setOptionValue("presolve", "off");

h.readModel("check/instances/egout.mps")

for iCase in range(0, 2):
    if iCase == 0:
        user_callback_data = EGOUT_OBJECTIVE_TARGET;
        h.setCallback(user_callback, user_callback_data)
        h.startCallback(hscb.HighsCallbackType.kCallbackMipInterrupt)
        required_model_status = highspy.HighsModelStatus.kInterrupt
    else:
        user_callback_data = 1e30;
        h.setCallback(user_callback, user_callback_data)
        h.startCallback(hscb.HighsCallbackType.kCallbackMipImprovingSolution)
        required_model_status = highspy.HighsModelStatus.kOptimal

    h.run()

    assert (h.getModelStatus() == required_model_status)

    print(f"user_callback_data = {user_callback_data}: Success!")
    h.clearSolver()