1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
#include <time.h>
#include <chrono>
#include <cmath>
#include "alnread.h"
bool seed_compare (Seed i,Seed j) {
return (i.start_pos < j.start_pos);
}
bool seed_compare_pos (const USeed & i, const USeed & j) {
return (i->start_pos < j->start_pos);
}
bool seed_compare_num_matches (const USeed & i, const USeed & j) {
return (i->num_matches < j->num_matches);
}
uint16_t Seed::serialize_size() {
// calculate total size
uint16_t total_size = 0;
total_size += sizeof(GenomeIdType); // the target genome ID
total_size += sizeof(PositionType); // the start position
total_size += sizeof(CountType); // the number of matching positions
if (cigar_data.size() >= 256)
throw std::overflow_error("CIGAR information contains more than 255 elements!");
uint8_t cigar_len = cigar_data.size();
total_size += sizeof(uint8_t); // the size of the cigar information
total_size += cigar_len*(sizeof(CountType) + sizeof(DiffType)); // the cigar information itself
return total_size;
}
std::vector<char> Seed::serialize() {
// get the total size of the serialization
uint16_t total_size = serialize_size();
uint8_t cigar_len = (uint8_t) cigar_data.size();
// create the vector to store the data
std::vector<char> data (total_size);
char* d = data.data();
// write the target Genome ID
memcpy(d,&gid,sizeof(GenomeIdType));
d += sizeof(GenomeIdType);
// write the start position
memcpy(d,&start_pos,sizeof(PositionType));
d += sizeof(PositionType);
// write the number of matches
memcpy(d,&num_matches,sizeof(CountType));
d += sizeof(CountType);
// write the number of cigar elements
memcpy(d,&cigar_len,sizeof(uint8_t));
d += sizeof(uint8_t);
// write the seeds
for (auto it = cigar_data.begin(); it != cigar_data.end(); ++it) {
memcpy(d,&(it->length),sizeof(CountType));
d += sizeof(CountType);
memcpy(d,&(it->offset),sizeof(DiffType));
d += sizeof(DiffType);
}
return data;
}
uint16_t Seed::deserialize(char* d) {
// the total number of bytes read
uint16_t bytes = 0;
// read the target Genome ID
memcpy(&gid,d,sizeof(GenomeIdType));
bytes += sizeof(GenomeIdType);
// read the start position
memcpy(&start_pos,d+bytes,sizeof(PositionType));
bytes += sizeof(PositionType);
// read the number of matches
memcpy(&num_matches,d+bytes,sizeof(CountType));
bytes += sizeof(CountType);
// read the number of cigar elements
uint8_t cigar_len = 0;
memcpy(&cigar_len,d+bytes,sizeof(uint8_t));
bytes += sizeof(uint8_t);
// read the cigar elements
cigar_data.clear();
cigar_data.reserve(cigar_len);
for (uint8_t i = 0; i < cigar_len; ++i) {
CigarElement cig;
memcpy(&(cig.length),d+bytes,sizeof(CountType));
bytes += sizeof(CountType);
memcpy(&(cig.offset),d+bytes,sizeof(DiffType));
bytes += sizeof(DiffType);
cigar_data.push_back(cig);
}
return bytes;
}
uint64_t ReadAlignment::serialize_size() {
// calculate total size first
uint64_t total_size = 0;
total_size += 1; // the flag
total_size += sizeof(HashIntoType); // the last k-mer
total_size += sizeof(CountType); // the cycle number
total_size += sizeof(CountType); // the last_invalid cycle
// total number of seeds
total_size += sizeof(uint32_t);
// size of the single seeds
for (auto & s : seeds) {
total_size += sizeof(uint16_t) + s->serialize_size();
}
return total_size;
}
std::vector<char> ReadAlignment::serialize() {
// get the total size of the serialization
uint64_t total_size = serialize_size();
uint32_t num_seeds = (uint32_t) seeds.size();
// create the vector to store the data
std::vector<char> data (total_size);
char* d = data.data();
// write the flag
memcpy(d,&flags,1);
d++;
// write the last k-mer
memcpy(d,&last_kmer,sizeof(HashIntoType));
d += sizeof(HashIntoType);
// write the cycle
memcpy(d,&cycle,sizeof(CountType));
d += sizeof(CountType);
// write the last invalid cycle
memcpy(d,&last_invalid,sizeof(CountType));
d += sizeof(CountType);
// write the number of seeds
memcpy(d,&num_seeds,sizeof(uint32_t));
d += sizeof(uint32_t);
// write the seeds
for (auto it = seeds.begin(); it != seeds.end(); ++it) {
std::vector<char> seed_data = (*it)->serialize();
uint16_t seed_size = seed_data.size();
memcpy(d,&seed_size,sizeof(uint16_t));
d += sizeof(uint16_t);
memcpy(d,seed_data.data(),seed_size);
d += seed_size;
}
return data;
}
uint64_t ReadAlignment::deserialize(char* d) {
// the total number of bytes read
uint64_t bytes = 0;
// read the flag
memcpy(&flags,d,1);
bytes++;
// read the last k-mer
memcpy(&last_kmer,d+bytes,sizeof(HashIntoType));
bytes += sizeof(HashIntoType);
// read the cycle
memcpy(&cycle,d+bytes,sizeof(CountType));
bytes += sizeof(CountType);
// read the last invalid cycle
memcpy(&last_invalid,d+bytes,sizeof(CountType));
bytes += sizeof(CountType);
// read the number of seeds
uint32_t num_seeds = 0;
memcpy(&num_seeds,d+bytes,sizeof(uint32_t));
bytes += sizeof(uint32_t);
// read the seeds
seeds.clear();
seeds.reserve(num_seeds);
for (uint32_t i = 0; i < num_seeds; ++i) {
uint16_t seed_size = 0;
memcpy(&seed_size,d+bytes,sizeof(uint16_t));
bytes += sizeof(uint16_t);
std::vector<char> seed_data (seed_size,0);
memcpy(seed_data.data(),d+bytes,seed_size);
bytes += seed_size;
USeed s (new Seed);
s->deserialize(seed_data.data());
seeds.push_back(std::move(s));
}
return bytes;
}
// Create new seeds from a list of kmer positions and add to current seeds
void ReadAlignment::add_new_seeds(GenomePosListType& pos) {
seeds.reserve(seeds.size() + pos.size());
for(GenomePosListIt it = pos.begin(); it != pos.end(); ++it) {
USeed s (new Seed);
s->gid = it->gid;
s->start_pos = it->pos - (cycle-K);
s->num_matches = 1;
s->cigar_data.clear();
if (cycle-K > 0)
s->cigar_data.emplace_back(cycle-K,NO_MATCH);
s->cigar_data.emplace_back(K,0);
seeds.push_back(std::move(s));
}
}
std::vector<std::chrono::high_resolution_clock::duration> ReadAlignment::extend_alignment(char bc, KixRun* index, AlignmentSettings* settings) {
// time stuff
std::chrono::high_resolution_clock::duration d_vec = std::chrono::high_resolution_clock::duration::zero();
std::chrono::high_resolution_clock::duration d_seed = std::chrono::high_resolution_clock::duration::zero();
std::chrono::high_resolution_clock::duration d_add = std::chrono::high_resolution_clock::duration::zero();
std::chrono::high_resolution_clock::duration d_rem = std::chrono::high_resolution_clock::duration::zero();
std::chrono::high_resolution_clock::duration d_sort = std::chrono::high_resolution_clock::duration::zero();
// q-gram-lemma: seeds added after last_new_seed have at least more than min_errors errors
CountType last_new_seed = K*(settings->min_errors+1);
// move to the next cycle
cycle += 1;
// update the last k-mer
uint8_t qual = ((bc >> 2) & 63); // get bits 3-8
if ( (bc == 0) || (qual < settings->min_qual) ){ // no call if all 0 bits or quality below threshold
last_kmer = 0;
last_invalid = cycle;
}
else{
// update the current k-mer of the read using the basecall
update_kmer(last_kmer, bc);
}
// update the alignments
if ( last_invalid+K-1 < cycle ) {
std::chrono::high_resolution_clock::time_point tv1 = std::chrono::high_resolution_clock::now();
// get all occurrences of last_kmer (fwd & rc) from index
GenomePosListType pos = index->retrieve_positions(last_kmer);
// pos MUST be sorted. However, pos is sorted as long as the index is sorted (should be by default)
if (settings->sort_positions) {
std::sort(pos.begin(),pos.end(),gp_compare);
}
std::chrono::high_resolution_clock::time_point tv2 = std::chrono::high_resolution_clock::now();
d_vec = tv2 - tv1;
std::chrono::high_resolution_clock::time_point tl1 = std::chrono::high_resolution_clock::now();
CountType max_num_matches = 0;
// check if the current k-mer was trimmed in the index
if ( (pos.size() == 1) && (pos[0].gid == TRIMMED) ) {
// clear the pos list such that nothing bad happens in the next steps
pos.clear();
// pretend that all existing seeds could be extended
for (auto sd = seeds.begin() ; sd!=seeds.end(); ++sd ) {
(*sd)->cigar_data.back().length += 1;
if ((*sd)->cigar_data.back().offset != NO_MATCH) {
(*sd)->num_matches += 1;
max_num_matches = std::max(max_num_matches, (*sd)->num_matches);
}
}
}
// not trimmed in the index --> try to extend existing seeds
else {
// find support for each candidate: iterate over seed candidates and positions simultaneously
auto cPos1 = pos.begin(); // beginning of the sliding window [cPos1, cPos2)
auto cPos2 = pos.begin(); // end of the sliding window
auto wSeed1 = seeds.begin(); // beginning of the sliding window in the seeds [wSeed1, wSeed2)
auto wSeed2 = seeds.begin(); // end of the sliding window
for (auto cSeed = seeds.begin(); cSeed!=seeds.end(); ++cSeed ) {
PositionType seed_pos = (*cSeed)->start_pos + cycle -K;
// adjust the window in the position list
while( (cPos1!=pos.end()) && (cPos1->pos < seed_pos - settings->window) ){
++cPos1;
}
while( (cPos2!=pos.end()) && (cPos2->pos < seed_pos + settings->window) ){
++cPos2;
}
// adjust the neighboring seeds window
while( (wSeed1!=seeds.end()) && ((*wSeed1)->start_pos < (*cSeed)->start_pos - 2*settings->window) ){
++wSeed1;
}
while( (wSeed2!=seeds.end()) && ((*wSeed2)->start_pos < (*cSeed)->start_pos + 2*settings->window) ){
++wSeed2;
}
// search all positions in the window for the best matching extension of the seed
DiffType best_distance = settings->window+1; // set larger than search window
GenomePosListIt best_match = cPos2; // set behind the last element of the window
for(GenomePosListIt win=cPos1; win!=cPos2; ++win){
if (win->gid == (*cSeed)->gid){
int dist = seed_pos - win->pos;
if ((best_match==cPos2)||(abs(dist) < abs(best_distance))) {
best_match = win;
best_distance = dist;
}
}
}
// assign best position to the seed
if (best_match != cPos2) {
// find the best seed from the perspective of best_match
DiffType best_sdist = 2*settings->window+1; // set larger than search window
auto best_seed = wSeed2; // set behind the last element of the window
for(auto win=wSeed1; win!=wSeed2; ++win){
if ((*win)->gid == best_match->gid){
int dist = best_match->pos - ((*win)->start_pos+cycle-K);
if ((best_seed==wSeed2)||(abs(dist) < abs(best_sdist))) {
best_seed = win;
best_sdist = dist;
}
}
}
if (best_seed == cSeed) {
//(*cSeed)->matches.push_back(best_distance);
(*cSeed)->num_matches += 1;
if ( (*cSeed)->cigar_data.back().offset == NO_MATCH ) {
// start a new match area. 1 matching k-mer = K matches
(*cSeed)->cigar_data.emplace_back(K,best_distance);
}
else {
// continue existing match area
(*cSeed)->cigar_data.back().length += 1;
}
max_num_matches = std::max(max_num_matches, (*cSeed)->num_matches);
// remove assigned position from the list
if(best_match == cPos1){
cPos1 = pos.erase(best_match);
}
else {
pos.erase(best_match);
}
--cPos2; //
}
else{
// best match has another favourite
if ( (*cSeed)->cigar_data.back().offset == NO_MATCH ) {
// continue existing mismatch area
(*cSeed)->cigar_data.back().length += 1;
}
else {
// start new mismatch area
(*cSeed)->cigar_data.emplace_back(1,NO_MATCH);
}
//(*cSeed)->matches.push_back(NO_MATCH);
}
}
else{
// no position found to extend the current seed
if ( (*cSeed)->cigar_data.back().offset == NO_MATCH ) {
// continue existing mismatch area
(*cSeed)->cigar_data.back().length += 1;
}
else {
// start new mismatch area
(*cSeed)->cigar_data.emplace_back(1,NO_MATCH);
}
//(*cSeed)->matches.push_back(NO_MATCH);
}
} // END: for(seeds...)
} // END: not trimmed
std::chrono::high_resolution_clock::time_point tl2 = std::chrono::high_resolution_clock::now();
d_seed = tl2 - tl1;
std::chrono::high_resolution_clock::time_point ta1 = std::chrono::high_resolution_clock::now();
// set the last_new_seed cycle according to the mapping mode
if ( settings->best_hit_mode ) {
last_new_seed = std::min(CountType(rlen-max_num_matches+1),last_new_seed);
}
if ( settings->best_n_mode ) {
//TODO: last_new_seed = std::min(CountType(rlen-max_num_matches+1),last_new_seed);
}
// create new seed candidates for each k-mer match that was not used to extend a seed
if ( cycle <= last_new_seed ) {
add_new_seeds(pos);
if (pos.begin() != pos.end()) {
max_num_matches = std::max(max_num_matches, (CountType)1);
}
}
std::chrono::high_resolution_clock::time_point ta2 = std::chrono::high_resolution_clock::now();
d_add = ta2 - ta1;
std::chrono::high_resolution_clock::time_point tr1 = std::chrono::high_resolution_clock::now();
// get the num_matches of the N'th best seed
// seed list gets partially sorted (and sorted back later). Noone ever said it will be fast...
CountType nth_best_match = 0;
if ( settings->best_n_mode && (settings->best_n > 0) && (seeds.size() >= settings->best_n) ) {
std::nth_element(seeds.begin(), seeds.begin()+seeds.size()-settings->best_n , seeds.end(), seed_compare_num_matches);
nth_best_match = (*(seeds.begin()+seeds.size()-settings->best_n))->num_matches;
}
// define a lambda function implementing all discard criteria.
// all criteria must be fulfilled to keep the seed. Go from stronger to weaker criteria.
auto crit = [&] (USeed & s) {
// don't filter seeds that were extended in this cycle
if (s->cigar_data.back().offset != NO_MATCH) {
return false;
}
// 1. remove one-hit-wonders
if ( settings->discard_ohw && (cycle>settings->start_ohw)&&(s->num_matches<=1) ) {
return true;
}
// 2. remove according to q-gram lemma
if ( cycle > (K*(settings->min_errors+1) + s->num_matches) ) {
return true;
}
// 3. remove according Best-Hit-criteria
if ( settings->best_hit_mode ) {
if (cycle > (rlen - max_num_matches + s->num_matches)) {
return true;
}
}
// 4. remove according Best-N-criteria
else if ( settings->best_n_mode ) {
if ( cycle > (rlen - nth_best_match + s->num_matches) ) {
return true;
}
}
// get the number of mismatches since the last match
int since_last_match = s->cigar_data.back().length;
// 5. heuristic criterium
if ((since_last_match >= K+10)&&(s->num_matches < (int)(std::sqrt(cycle-K+1)))){
return true;
}
return false;
};
seeds.erase(std::remove_if(seeds.begin(),seeds.end(),crit) , seeds.end());
std::chrono::high_resolution_clock::time_point tr2 = std::chrono::high_resolution_clock::now();
d_rem = tr2 - tr1;
std::chrono::high_resolution_clock::time_point tso1 = std::chrono::high_resolution_clock::now();
std::sort(seeds.begin(), seeds.end(), seed_compare_pos);
std::chrono::high_resolution_clock::time_point tso2 = std::chrono::high_resolution_clock::now();
d_sort = tso2 - tso1;
} // END: if ( last_invalid+K-1 < cycle ) ...
else {
// write a NO_MATCH if cycle > K-1
if ( cycle > K-1 ) {
for (auto sit = seeds.begin(); sit != seeds.end(); ++sit){
//(*sit)->matches.push_back(NO_MATCH);
if ( (*sit)->cigar_data.back().offset == NO_MATCH ) {
// continue existing mismatch area
(*sit)->cigar_data.back().length += 1;
}
else {
// start new mismatch area
(*sit)->cigar_data.emplace_back(1,NO_MATCH);
}
}
}
}
std::vector<std::chrono::high_resolution_clock::duration> dur;
dur.push_back(d_vec);
dur.push_back(d_seed);
dur.push_back(d_add);
dur.push_back(d_rem);
dur.push_back(d_sort);
return dur;
}
// disable this alignment, i.e. delete all seeds and set the last_invalid indicator to the
// end of the read. --> This read will not be aligned and consumes almost no space.
void ReadAlignment::disable() {
last_invalid = rlen;
seeds.clear();
flags = 0;
}
// generate the SAM flags for a seed
uint32_t ReadAlignment::get_SAM_flags(uint32_t sd) {
if ( sd < seeds.size() ) {
uint32_t flags = 0;
// flag for the reverse strand alignment
if (seeds[sd]->start_pos < 0)
flags += 16;
// Primary/Secondary alignment
// the "Primary" alignment is the alignment with the highest number of matches
// in case of a tie, the left-most alignment wins (including negative positions)
bool primary = true;
for(uint32_t i = 0; i < seeds.size(); i++) {
if(seeds[i]->num_matches > seeds[sd]->num_matches || (seeds[i]->num_matches == seeds[sd]->num_matches && i < sd)) {
primary = false;
}
}
if (!primary)
flags += 256;
return flags;
}
else {
throw std::length_error(std::string("Error generating SAM flags: requested alignment ID (")+std::to_string(sd)+std::string(") exceeds number of alignments (")+std::to_string(seeds.size())+std::string(")!"));
}
}
// obtain start position of a seed according to SAM (leftmost)
PositionType ReadAlignment::get_SAM_start_pos(uint32_t sd) {
PositionType pos = seeds[sd]->start_pos;
if (pos < 0) {
pos = -pos - rlen + K;
}
return pos;
}
// calculate a quality score according to SAM
uint16_t ReadAlignment::get_SAM_quality(uint32_t sd) {
CountType best_match = 0;
for (uint32_t s = 0; s < seeds.size(); s++) {
best_match = std::max(seeds[s]->num_matches, best_match);
}
double total_weighted_matches = 0.;
for (uint32_t s = 0; s < seeds.size(); s++) {
total_weighted_matches = std::pow(4., double(seeds[s]->num_matches - best_match));
}
double prob = std::pow(4., double(seeds[sd]->num_matches - best_match)) / total_weighted_matches;
int score = -10 * std::log10(prob);
if (score > 255 || score < 0)
score = 255;
return score;
}
/* Calculate the mapping quality for all alignments of the read based on the other alignments
and the number of matching positions.
*/
int16_t MAPQ(const SeedVec &sv){
return sv.size();
}
/* Helper function; checks if the position at 'sit' is sane. only applicable for reads matching
to the backwards genome sequence (forward sanity check is MUCH easier) */
bool is_sane(std::vector<DiffType>::iterator sit,
const std::vector<DiffType> &matches){
DiffType dist = 0;
DiffType this_offset = *sit;
// find the OFFSET of the next matching region (after the next NOMATCH region)
bool passed_NOMATCH = false;
while(!((*sit!=NO_MATCH)&&passed_NOMATCH) && (sit!=matches.end())){
if(*sit == NO_MATCH) {passed_NOMATCH = true;}
++sit;
++dist;
}
if (sit == matches.end()) {
return true;
}
else {
int offset_change = *sit - this_offset;
return ((dist-K+1 - offset_change*(offset_change>0)) > 0);
}
}
/* Construct a CIGAR string from a seed */
std::string CIGAR(const Seed &seed){
// Alignments are always reported in forward direction wrt the reference sequence --> take care
bool fw = (seed.start_pos >= 0); // Read was mapped to the forward sequence
CigarVector cig;
if (fw) {
cig = seed.cigar_data;
}
else {
// need to adjust the offsets --> find last offset != NO_MATCH
auto rit = seed.cigar_data.rbegin();
while((rit != seed.cigar_data.rend()) && (rit->offset == NO_MATCH)) {
++rit;
}
int loffset;
if (rit != seed.cigar_data.rend())
loffset = rit->offset;
else
loffset = 0;
cig.reserve(seed.cigar_data.size());
// reverse direction of 'cigar_data' and adjust offsets
for(rit = seed.cigar_data.rbegin(); rit != seed.cigar_data.rend(); ++rit) {
if (rit->offset != NO_MATCH)
cig.emplace_back(rit->length,loffset - rit->offset);
else
cig.emplace_back(rit->length,NO_MATCH);
}
}
// Now, calculate the CIGAR string
std::string cigar;
if (cig.size() > 0) {
int previous_offset = 0; // the offset in the previous matching region
for (uint32_t i = 0; i < cig.size(); i++) {
// extend the cigar string accordingly
if ( cig[i].offset != NO_MATCH ) {
cigar.append(std::to_string(cig[i].length)+std::string("M"));
previous_offset = cig[i].offset;
}
else {
int offset_change = 0;
int mm_len = cig[i].length -K+1;
// correct the length of the mismatch region if there are insane positions
if ( i+1 < cig.size() ) {
offset_change = cig[i+1].offset - previous_offset;
if (offset_change > mm_len) {
// offset change cannot be larger than the mismatch area
cig[i].length += (offset_change - mm_len);
cig[i+1].length -= (offset_change - mm_len);
mm_len = cig[i].length -K+1;
}
}
if ( offset_change == 0 ) {
// Sequence mismatch(es)
if ( i > 0 && i < cig.size()-1 ) {
cigar.append(std::to_string(cig[i].length -K+1)+std::string("X"));
}
else {
// report as soft-clipped at the beginning/end of the read
cigar.append(std::to_string(cig[i].length)+std::string("S"));
}
}
else {
// Number of insertions
int insertions = cig[i].length -K+1;
// Number of deletions
int deletions = - (offset_change - insertions);
// append to cigar string
if ( insertions > 0 )
cigar.append(std::to_string(insertions)+std::string("I"));
if ( deletions > 0 )
cigar.append(std::to_string(deletions)+std::string("D"));
}
}
}
}
/*int count = K-1; // number of matches/mismatches in a row
bool previous_match = true; // was the previous k-mer a match? -> recognize changes
// change initial values if the read starts with a mismatch
if(*(matches.begin()) == NO_MATCH) {
count = K-1;
previous_match = false;
}
int previous_offset = 0; // the offset in the previous matching region
int pos = 0; // current position in the read
for(auto it = matches.begin(); it != matches.end(); ++it){
if ((*it) != NO_MATCH) {
// The k-mer could be matched
if (previous_match) {
// Check the sanity of this match, if found on backward seq
bool sane = true;
if (!fw){
sane = is_sane(it, matches);
}
if (sane) {
// Continue a match
count += 1;
previous_offset = (*it);
}
else {
// end the match here, treat this position as mismatch
//std::cout << "INSANE position!!!" << std::endl;
// start a new mismatch area here. Don't care about countinuing, this happens below
// Finish a match region
cigar.append(std::to_string(count)+std::string("M"));
// Start a new mismatch region
count = 1;
previous_match = false;
}
}
// the previous k-mer was not matched
else {
int offset_change = (*it) - previous_offset;
// check the sanity of the match
bool sane = ((count-K+1 - offset_change*(offset_change>0)) >= 0) && fw;
// add the criterium for backward matches here (as above)
sane = sane || (!fw && is_sane(it, matches));
if (sane) {
// Finish a mismatch region
if (offset_change == 0) {
if(count > K-1){
// Sequence mismatch(es)
cigar.append(std::to_string(count-K+1)+std::string("X"));
}
}
else {
// cure only on forward mapping reads
if (count > K-1){
// Insertion compared to reference
cigar.append(std::to_string(count-K+1)+std::string("I"));
}
if (count-offset_change > K-1){
// In this case, a string of length count-offset_change was deleted from reference
cigar.append(std::to_string(count-offset_change-K+1)+std::string("D"));
}
}
// Start a new match region. The first k-mer represents K matching positions
count = K;
previous_match = true;
previous_offset = (*it);
}
else {
// insane match --> treat as mismatch
count += 1;
previous_match = false;
}
}
}
else {
// The k-mer could NOT be matched
if (!previous_match) {
// Continue a mismatch
count += 1;
} else {
// Finish a match region
cigar.append(std::to_string(count)+std::string("M"));
// Start a new mismatch region
count = 1;
previous_match = false;
}
}
// increase the position counter
pos++;
}
// Complete the cigar string
if (previous_match) {
// Fill cigar string with matches
cigar.append(std::to_string(count)+std::string("M"));
}
else {
// Fill cigar string with mismatches
// TODO: probably report this as "soft-clipping"
cigar.append(std::to_string(count)+std::string("X"));
}
}*/
return cigar;
}
|