1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
|
#include "alnread.h"
seqan2::String<seqan2::CigarElement<> > Seed::returnSeqanCigarString() const {
bool extended_cigar = globalAlignmentSettings.get_extended_cigar();
typedef seqan2::String<seqan2::CigarElement<> > TSeqanCigarString;
TSeqanCigarString seqanCigarString;
seqan2::CigarElement<> cigarElem;
for (CigarVector::const_iterator it = cigar_data.begin(); it != cigar_data.end(); ++it) {
// Alignment begins with NO_MATCH => Softclip
if (it == cigar_data.begin() && (*it).operation==NO_MATCH) {
cigarElem.operation='S';
cigarElem.count=(*it).length;
seqan2::appendValue(seqanCigarString, cigarElem);
continue;
}
// Mismatch => Alignment match
if ((*it).operation==NO_MATCH) {
cigarElem.operation= extended_cigar ? 'X' : 'M';
cigarElem.count=(*it).length;
seqan2::appendValue(seqanCigarString, cigarElem);
continue;
}
// Deletion
else if((*it).operation==DELETION) {
cigarElem.operation='D';
cigarElem.count=(*it).length;
seqan2::appendValue(seqanCigarString, cigarElem);
continue;
}
// Insertion
else if((*it).operation==INSERTION) {
cigarElem.operation='I';
cigarElem.count=(*it).length;
seqan2::appendValue(seqanCigarString, cigarElem);
continue;
}
// Match
else {
cigarElem.operation= extended_cigar ? '=' : 'M';
cigarElem.count=(*it).length;
seqan2::appendValue(seqanCigarString, cigarElem);
continue;
}
}
// collapse Neighboring match regions
for (unsigned k = 1; k<length(seqanCigarString); k++)
if ((seqanCigarString[k-1].operation == 'M') && (seqanCigarString[k].operation == 'M')) {
unsigned temp = seqanCigarString[k].count;
erase(seqanCigarString, k);
seqanCigarString[k-1].count += temp;
k--;
}
return seqanCigarString;
}
void Seed::cout() const {
std::cout << "----- SEED START -----" << std::endl;
std::cout << "Max. alignment score: " << this->max_as << std::endl;
std::cout << "CIGAR: ";
for ( auto el : this->cigar_data ) {
std::cout << el.length;
if ( el.operation == NO_MATCH ) {
std::cout << "X ";
}
else if ( el.operation == INSERTION ) {
std::cout << "I ";
}
else if ( el.operation == DELETION ) {
std::cout << "D ";
}
else {
std::cout << "M(" << el.operation << ") ";
}
}
std::cout << std::endl << "------ SEED END ------" << std::endl;
}
uint16_t Seed::serialize_size() const {
// Calculate total size
uint16_t total_size = 0;
// Size of FM-Index vertex descriptor
total_size += sizeof(FMVertexDescriptor);
// Maximal AS
total_size += sizeof(ScoreType);
if (cigar_data.size() >= 256)
throw std::overflow_error("CIGAR information contains more than 255 elements!");
uint8_t cigar_len = cigar_data.size();
// Number of CIGAR elements
total_size += sizeof(uint8_t);
// Length and offset for each CIGAR element
total_size += cigar_len*(sizeof(CountType));
// Size of mdz_nucleotides vector
total_size += sizeof(uint8_t);
// MD:Z nucleotides
total_size += mdz_nucleotides.size() * sizeof(uint8_t);
return total_size;
}
std::vector<char> Seed::serialize() {
// Total number of bytes after serialization
uint16_t total_size = serialize_size();
// Number of CIGAR elements
uint8_t cigar_len = (uint8_t) cigar_data.size();
// Char vector to store the data
std::vector<char> data (total_size);
char* d = data.data();
// Write vertex descriptor
memcpy(d,&vDesc,sizeof(FMVertexDescriptor));
d += sizeof(FMVertexDescriptor);
// Write number of errors
memcpy(d,&max_as,sizeof(ScoreType));
d += sizeof(ScoreType);
// Write number of CIGAR elements
memcpy(d,&cigar_len,sizeof(uint8_t));
d += sizeof(uint8_t);
// Write the CIGAR elements themselves
for (auto it = cigar_data.begin(); it != cigar_data.end(); ++it) {
// Serialize the CIGAR elements information
CountType serialized_value = it->length;
serialized_value = (serialized_value << 2);
serialized_value |= it->operation;
memcpy(d,&(serialized_value),sizeof(CountType));
d += sizeof(CountType);
}
// Write size of mdz_nucleotides vector
memcpy(d,&mdz_length,sizeof(uint8_t));
d += sizeof(uint8_t);
// MD:Z nucleotides
for ( auto it = mdz_nucleotides.begin(); it != mdz_nucleotides.end(); ++it) {
uint8_t next_byte = *it;
memcpy(d,&next_byte,sizeof(uint8_t));
d += sizeof(uint8_t);
}
return data;
}
uint16_t Seed::deserialize(char* d) {
// Total number of bytes read
uint16_t bytes = 0;
// FM-index Vertex Descriptor
memcpy(&vDesc,d+bytes,sizeof(FMVertexDescriptor));
bytes += sizeof(FMVertexDescriptor);
// Number of errors
memcpy(&max_as,d+bytes,sizeof(ScoreType));
bytes += sizeof(ScoreType);
// Number of CIGAR elements
uint8_t cigar_len = 0;
memcpy(&cigar_len,d+bytes,sizeof(uint8_t));
bytes += sizeof(uint8_t);
// The CIGAR elements themselves
cigar_data.clear();
for (uint8_t i = 0; i < cigar_len; ++i) {
// Deserialize CIGAR element
CountType serialized_value;
memcpy(&(serialized_value),d+bytes,sizeof(CountType));
bytes += sizeof(CountType);
Operations operation = get_operation(serialized_value & CountType(two_bit_mask));
CountType length = (serialized_value >> 2);
// Create CigarElement
CigarElement cig ( length, operation );
// Add to CIGAR vector
cigar_data.emplace_back(cig);
}
// Read size of mdz_nucleotides vector
memcpy(&mdz_length, d+bytes, sizeof(uint8_t));
bytes += sizeof(uint8_t);
// MD:Z nucleotides
for ( CountType i = 0; i < (mdz_length+3)/4; i++ ) {
uint8_t next_byte;
memcpy(&next_byte, d+bytes, sizeof(uint8_t));
bytes += sizeof(uint8_t);
mdz_nucleotides.push_back(next_byte);
}
return bytes;
}
ScoreType Seed::get_as() const {
ScoreType as = 0;
auto cigar_it = cigar_data.begin();
for ( ;cigar_it != cigar_data.end(); ++cigar_it ) {
if ( cigar_it->length == 0 )
continue;
switch ( cigar_it->operation ) {
case NO_MATCH:
// Softclip
if ( cigar_it == cigar_data.begin() || std::next(cigar_it) == cigar_data.end() )
as -= ( globalAlignmentSettings.get_softclip_opening_penalty() + ( ( cigar_it->length ) * globalAlignmentSettings.get_softclip_extension_penalty() ) );
// Regular mismatch
else
as -= cigar_it->length * globalAlignmentSettings.get_mismatch_penalty();
break;
case INSERTION:
// Opening
as -= globalAlignmentSettings.get_insertion_opening_penalty();
// Extension
as -= ( ( cigar_it->length ) * globalAlignmentSettings.get_insertion_extension_penalty() );
break;
case DELETION:
// Opening
as -= globalAlignmentSettings.get_deletion_opening_penalty();
// Extension
as -= ( ( cigar_it->length ) * globalAlignmentSettings.get_deletion_extension_penalty() );
break;
default:
as += ( cigar_it->length * globalAlignmentSettings.get_match_score() );
break;
}
}
return as;
}
CountType Seed::get_nm() const {
CountType nm = 0;
// Don't count mismatches at front or end of the CIGAR string
for ( auto el = ++(cigar_data.begin()); el != cigar_data.end(); ++el )
nm += el->operation != MATCH ? el->length : 0;
return nm;
}
CountType Seed::get_softclip_length() const {
if ( cigar_data.size() == 0 )
return 0;
CountType sc_length = cigar_data.front().operation == NO_MATCH ? cigar_data.front().length : 0;
return sc_length;
}
void Seed::add_mdz_nucleotide(char nucl) {
uint8_t n = twobit_repr(nucl) << (6 - ( 2 * (mdz_length % 4) ) );
if ( mdz_length % 4 == 0 )
mdz_nucleotides.push_back(n);
else {
mdz_nucleotides.back() = mdz_nucleotides.back() | n;
}
mdz_length += 1;
}
std::string Seed::getMDZString() const {
std::string mdz_string = "";
uint8_t nucleotide_pos = 0;
auto mdz_it = mdz_nucleotides.begin();
CountType match_counter = 0;
for ( auto el = cigar_data.begin(); el != cigar_data.end(); ++el ) {
// Softclip --> not included in MD:Z
if ( el == cigar_data.begin() && el->operation == NO_MATCH )
continue;
switch ( el->operation ) {
// DELETION or NO_MATCH: Add previous match length and nucleotides for the current region.
case DELETION:
case NO_MATCH:
if ( match_counter != 0 )
mdz_string += std::to_string(match_counter);
for ( CountType i=0; i<el->length; i++ ) {
mdz_string += revtwobit_repr( ( (*mdz_it) >> ( 6 - (2*nucleotide_pos) ) ) & 3);
if ( nucleotide_pos >= 3 ) {
nucleotide_pos = 0;
++mdz_it;
}
else {
nucleotide_pos += 1;
}
}
match_counter = 0;
break;
// INSERTION: Do nothing.
case INSERTION:
break;
// Match: Count the region length.
default:
match_counter += el->length;
break;
}
}
// Add last match sequence if exist
if ( match_counter != 0 )
mdz_string += std::to_string(match_counter);
return mdz_string;
}
std::vector<GenomePosType> Seed::getPositions( CountType firstPosition, CountType lastPosition ) const {
// Total number of positions covered by this seed
CountType seed_positions = vDesc.range.i2 - vDesc.range.i1;
// Invalid function parameters ==> return empty list
if ( lastPosition <= firstPosition || seed_positions <= firstPosition )
return std::vector<GenomePosType>();
// Modify the vertex descriptor of the seed according to the given function parameters
FMVertexDescriptor sub_vDesc = vDesc;
if ( firstPosition > 0 )
sub_vDesc.range.i1 += firstPosition;
if ( lastPosition < seed_positions ) // If lastPosition > seed_positions, use the original vDesc.range.i2
sub_vDesc.range.i2 = vDesc.range.i1 + lastPosition;
// FM iterator
FMTopDownIterator it(idx->idx, sub_vDesc);
// List containing the positions obtained from the index (reserve enough space to not move the list in memory)
std::vector<GenomePosType> position_list;
// Get occurences
auto positions = seqan2::getOccurrences(it);
CountType sub_positions = seqan2::length(positions);
position_list.reserve( std::min ( seed_positions, sub_positions ) );
// Put positions into the return list
for ( CountType i = 0; i < sub_positions; ++i ) {
position_list.emplace_back(positions[i].i1, positions[i].i2);
}
return position_list;
}
uint64_t ReadAlignment::serialize_size() const {
// Total size
uint64_t total_size = 0;
// Flag
total_size += 1;
// Cycle number
total_size += sizeof(CountType);
// Last invalid cycle
total_size += sizeof(CountType);
// Sequence length
total_size += sizeof(CountType);
// The sequence information itself
total_size += sequenceStoreVector.size()*(sizeof(uint8_t));
// Barcode length
total_size += sizeof(CountType);
// The barcode sequence itself
total_size += barcodeStoreVector.size()*(sizeof(uint8_t));
// Number of seeds
total_size += sizeof(uint32_t);
// Size of the single seeds for each seed
for (auto & s : seeds) {
total_size += sizeof(uint16_t) + s->serialize_size();
}
return total_size;
}
std::vector<char> ReadAlignment::serialize() {
// Total size
uint64_t total_size = serialize_size();
// Number of seeds
uint32_t num_seeds = (uint32_t) seeds.size();
// Char vector to store the data
std::vector<char> data (total_size);
char* d = data.data();
// The flag
memcpy(d,&flags,1);
d++;
// Sequence length
memcpy(d,&sequenceLen,sizeof(CountType));
d += sizeof(CountType);
// The sequence itself
for (auto it = sequenceStoreVector.begin(); it != sequenceStoreVector.end(); ++it) {
memcpy(d,&(*it),sizeof(uint8_t));
d += sizeof(uint8_t);
}
// Barcode length
memcpy(d,&barcodeLen,sizeof(CountType));
d += sizeof(CountType);
// Barcode sequence itself
for (auto it = barcodeStoreVector.begin(); it != barcodeStoreVector.end(); ++it) {
memcpy(d,&(*it),sizeof(uint8_t));
d += sizeof(uint8_t);
}
// Number of seeds
memcpy(d,&num_seeds,sizeof(uint32_t));
d += sizeof(uint32_t);
// The seeds themselves
for (auto it = seeds.begin(); it != seeds.end(); ++it) {
std::vector<char> seed_data = (*it)->serialize();
uint16_t seed_size = seed_data.size();
memcpy(d,&seed_size,sizeof(uint16_t));
d += sizeof(uint16_t);
memcpy(d,seed_data.data(),seed_size);
d += seed_size;
}
return data;
}
uint64_t ReadAlignment::deserialize(char* d) {
// Total number of bytes
uint64_t bytes = 0;
// The flag
memcpy(&flags,d,1);
bytes++;
// Sequence length
sequenceLen = 0;
memcpy(&sequenceLen,d+bytes,sizeof(CountType));
bytes += sizeof(CountType);
// The sequence itself
unsigned seqVec_size = sequenceLen;
sequenceStoreVector.clear();
sequenceStoreVector.reserve(seqVec_size);
for (unsigned i = 0; i <seqVec_size; ++i) {
uint8_t elem;
memcpy(&(elem),d+bytes,sizeof(uint8_t));
bytes += sizeof(uint8_t);
sequenceStoreVector.push_back(elem);
}
// Barcode length
barcodeLen = 0;
memcpy(&barcodeLen,d+bytes,sizeof(CountType));
bytes += sizeof(CountType);
// The barcode itself
unsigned barVec_size = barcodeLen;
barcodeStoreVector.clear();
barcodeStoreVector.reserve(barVec_size);
for (unsigned i = 0; i <barVec_size; ++i) {
uint8_t elem;
memcpy(&(elem),d+bytes,sizeof(uint8_t));
bytes += sizeof(uint8_t);
barcodeStoreVector.push_back(elem);
}
// Number of seeds
uint32_t num_seeds = 0;
memcpy(&num_seeds,d+bytes,sizeof(uint32_t));
bytes += sizeof(uint32_t);
// The seeds themselves
seeds.clear();
for (uint32_t i = 0; i < num_seeds; ++i) {
uint16_t seed_size = 0;
memcpy(&seed_size,d+bytes,sizeof(uint16_t));
bytes += sizeof(uint16_t);
std::vector<char> seed_data (seed_size,0);
memcpy(seed_data.data(),d+bytes,seed_size);
bytes += seed_size;
USeed s (new Seed);
s->deserialize(seed_data.data());
// Must be sorted after extension anyways, so just push back
seeds.push_back(std::move(s));
}
return bytes;
}
std::string ReadAlignment::getSequenceString() const {
std::string seq = "";
seq.reserve( sequenceLen );
// iterate through all sequence bytes
for (unsigned i = 0; i<sequenceLen; i++ ) {
// Next basecall (6 bits quality; 2 bits nucleotide)
uint8_t next = sequenceStoreVector[i];
if ( next < 4 ) { // qual == 0 --> N-call
seq.append("N");
} else { // qual > 0 --> write nucleotide
seq += revtwobit_repr(next & two_bit_mask);
}
}
// return barcode sequence
return seq;
}
std::string ReadAlignment::getBarcodeString() const {
std::string seq = "";
seq.reserve( sequenceLen );
// iterate through all sequence bytes
for (unsigned i = 0; i<barcodeLen; i++ ) {
// Next basecall (6 bits quality; 2 bits nucleotide)
uint8_t next = barcodeStoreVector[i];
if ( next < 4 ) { // qual == 0 --> N-call
seq.append("N");
} else { // qual > 0 --> write nucleotide
seq += revtwobit_repr(next & two_bit_mask);
}
}
// return barcode sequence
return seq;
}
std::string ReadAlignment::getQualityString() const {
std::string qual = "";
qual.reserve( sequenceLen );
// iterate through all sequence bytes
for (unsigned i = 0; i<sequenceLen; i++ ) {
// Next Quality (shift by 2 bit nucleotide information)
uint8_t next_qual = sequenceStoreVector[i] >> 2;
qual += (to_phred_quality(next_qual));
}
// return PHRED quality sequence
return qual;
}
void ReadAlignment::appendNucleotideToSequenceStoreVector(char bc, bool appendToBarCode) {
// Store byte
CountType & len = appendToBarCode ? barcodeLen : sequenceLen;
std::vector<uint8_t> & seqVector = appendToBarCode ? barcodeStoreVector : sequenceStoreVector;
seqVector.push_back(bc);
++len;
return;
}
void ReadAlignment::extendSeed(char base, USeed origin, SeedVec & newSeeds){
uint64_t origin_range = origin->vDesc.range.i2 - origin->vDesc.range.i1;
uint64_t handled_range = 0;
// The new base / nucleotide
CountType tbr = twobit_repr(base);
// Handle match nucleotide
{
// Handle matching nucleotide first (this should be the default case)
FMTopDownIterator it(idx->idx, origin->vDesc);
if ( seqan2::goDown(it, seqan2::DnaString(base)) ) {
getMatchSeeds( tbr, tbr, it, origin, newSeeds );
handled_range += (it.vDesc.range.i2 - it.vDesc.range.i1);
}
}
// If all index entries are matches, no mismatches or InDels have to be handled.
if ( handled_range >= origin_range )
return;
// Handle insertion
getInsertionSeeds( origin, newSeeds );
// Handle mismatches and deletions
for ( CountType index_base = 0; index_base < 4; index_base++ ) {
// Stop if all index entries were handled
if ( handled_range >= origin_range )
break;
// Match nucleotide was already handled, so skip it
if ( index_base == tbr )
continue;
FMTopDownIterator it(idx->idx, origin->vDesc);
if ( seqan2::goDown(it, seqan2::DnaString(index_base)) ) {
// Handle no_match
getMatchSeeds( tbr, index_base, it, origin, newSeeds );
// Handle deletion
getDeletionSeeds( tbr, index_base, it, origin, newSeeds );
// Increase range of handled index entries
handled_range += it.vDesc.range.i2 - it.vDesc.range.i1;
}
}
}
void ReadAlignment::getMatchSeeds(CountType read_base, CountType index_base, FMTopDownIterator& it, USeed origin, SeedVec & newSeeds) {
ScoreType new_max_as = origin->max_as;
if ( read_base != index_base ) { // NO_MATCH
new_max_as -= ( globalAlignmentSettings.get_mismatch_penalty() + globalAlignmentSettings.get_match_score() );
// DON'T FINISH DELETION AND INSERTION REGIONS BY NO_MATCH!!!
if ( origin->cigar_data.back().operation == DELETION )
return;
if ( origin->cigar_data.back().operation == INSERTION )
return;
}
// If max_as is no longer valid, don't create related seeds
if ( new_max_as < getMinCycleScore(cycle, total_cycles) )
return;
// copy data from origin seed
USeed s (new Seed);
s->vDesc = it.vDesc;
s->cigar_data = origin->cigar_data;
s->mdz_nucleotides = origin->mdz_nucleotides;
s->max_as = new_max_as;
s->mdz_length = origin->mdz_length;
// Insert NO_MATCH region if necessary
if ( read_base != index_base && s->cigar_data.back().operation != NO_MATCH )
s->cigar_data.emplace_back(0, NO_MATCH);
// Insert MATCH region if necessary
else if ( read_base == index_base && s->cigar_data.back().operation != MATCH )
s->cigar_data.emplace_back(0, MATCH);
s->cigar_data.back().length += 1; // Increase region length
// Add nucleotide for MDZ tag
if ( read_base != index_base )
s->add_mdz_nucleotide(revtwobit_repr(index_base));
newSeeds.emplace_back(s); // Push the new seed to the vector.
}
void ReadAlignment::getInsertionSeeds(USeed origin, SeedVec & newSeeds) {
// No Indels in the last cycle
if ( cycle == total_cycles )
return;
// Stop if no gaps are permitted
if ( globalAlignmentSettings.get_max_gap_length() == 0 )
return;
// Don't handle insertions after deletions.
if ( origin->cigar_data.back().operation == DELETION )
return;
// Don't handle if insertion region is getting too long
if ( origin->cigar_data.back().operation == INSERTION && origin->cigar_data.back().length >= globalAlignmentSettings.get_max_gap_length())
return;
// Compute new maximal alignment score when having an insertion
ScoreType new_max_as = origin->max_as - globalAlignmentSettings.get_insertion_extension_penalty() - globalAlignmentSettings.get_match_score();
if ( origin->cigar_data.back().operation != INSERTION)
new_max_as -= globalAlignmentSettings.get_insertion_opening_penalty();
// Extend insertion region as long as number of errors is allowed.
if ( new_max_as >= getMinCycleScore(cycle, total_cycles) ) {
// copy data from origin seed
USeed s (new Seed);
s->vDesc = origin->vDesc; // Use origin since an insertion means to stay at the same index position
s->cigar_data = origin->cigar_data;
s->mdz_length = origin->mdz_length;
s->mdz_nucleotides = origin->mdz_nucleotides;
s->max_as = new_max_as; // Increase number of errors
// Insert INSERTION region if necessary
if ( s->cigar_data.back().operation != INSERTION )
s->cigar_data.emplace_back(0, INSERTION);
s->cigar_data.back().length += 1; // Increase insertion length
newSeeds.emplace_back(s); // Push the new seed to the vector.
}
}
void ReadAlignment::getDeletionSeeds(CountType read_base, CountType index_base, FMTopDownIterator& it, USeed origin, SeedVec & newSeeds) {
// No Indels in the last cycle
if ( cycle == total_cycles )
return;
// Stop if no gaps are permitted
if ( globalAlignmentSettings.get_max_gap_length() == 0 )
return;
// Don't handle nucleotide matches
if ( read_base == index_base )
return;
// Don't handle insertion regions
if ( origin->cigar_data.back().operation == INSERTION )
return;
// Can only be opening (extension is performed in recursive_goDown() function)
ScoreType new_max_as = origin->max_as - globalAlignmentSettings.get_deletion_opening_penalty() - globalAlignmentSettings.get_deletion_extension_penalty();
// Don't start iteration when having already all allowed errors.
if ( new_max_as < getMinCycleScore(cycle, total_cycles) )
return;
// copy data from origin seed
USeed s (new Seed);
s->vDesc = it.vDesc;
s->cigar_data = origin->cigar_data;
s->mdz_length = origin->mdz_length;
s->mdz_nucleotides = origin->mdz_nucleotides;
s->max_as = new_max_as; // Increase number of errors
s->cigar_data.emplace_back(1, DELETION); // init deletion region
// Add MDZ nucleotide
s->add_mdz_nucleotide(revtwobit_repr(index_base));
recursive_goDown(read_base, s, newSeeds);
}
void ReadAlignment::recursive_goDown(CountType base_repr, USeed origin, SeedVec & newSeeds) {
// Count ranges to avoid unnecessary index calls
uint64_t origin_range = origin->vDesc.range.i2 - origin->vDesc.range.i1;
uint64_t handled_range = 0;
if ( origin->max_as < globalAlignmentSettings.get_min_as() ) // too many errors -> no seeds
return;
// Only handle deletion regions
if ( origin->cigar_data.back().operation != DELETION )
return;
// Start with match base
{
// Create index iterator
FMTopDownIterator it(idx->idx, origin->vDesc);
// Only consider paths existing in the index
if ( goDown(it, seqan2::DnaString(revtwobit_repr( base_repr )))) {
// copy data from origin seed
USeed s (new Seed);
s->vDesc = it.vDesc;
s->cigar_data = origin->cigar_data;
s->mdz_length = origin->mdz_length;
s->mdz_nucleotides = origin->mdz_nucleotides;
s->max_as = origin->max_as ;
s->cigar_data.emplace_back(1, MATCH); // init MATCH region
newSeeds.emplace_back(s);
handled_range += it.vDesc.range.i2 - it.vDesc.range.i1;
}
}
if ( origin->cigar_data.back().length >= globalAlignmentSettings.get_max_gap_length() )
return;
ScoreType new_max_as = origin->max_as - globalAlignmentSettings.get_deletion_extension_penalty();
// stop if maximum number of errors reached
if ( new_max_as < getMinCycleScore(cycle, total_cycles) )
return;
// iterate through all non-match bases
for (int b=0; b<4; b++) {
// Skip the match base which was already handled
if ( b == base_repr )
continue;
// Stop if all bases occuring in the index were already handled
if ( handled_range >= origin_range )
break;
// Create index iterator
FMTopDownIterator it(idx->idx, origin->vDesc);
// Only consider paths existing in the index
if ( goDown(it, seqan2::DnaString(revtwobit_repr(b)))) {
// copy data from origin seed
USeed s (new Seed);
s->vDesc = it.vDesc;
s->cigar_data = origin->cigar_data;
s->mdz_length = origin->mdz_length;
s->mdz_nucleotides = origin->mdz_nucleotides;
s->max_as = new_max_as; // Increase number of errors
s->cigar_data.back().length += 1; // extend deletion region
s->add_mdz_nucleotide(revtwobit_repr(b));
recursive_goDown(base_repr, s, newSeeds);
handled_range += (it.vDesc.range.i2 - it.vDesc.range.i1);
}
}
}
void ReadAlignment::createSeeds(SeedVec & newSeeds) {
CountType softclip_cycles = cycle - globalAlignmentSettings.get_anchor_length();
CountType max_match_cycles = total_cycles - softclip_cycles;
ScoreType max_as = ( max_match_cycles * globalAlignmentSettings.get_match_score() ) - getMinSoftclipPenalty(softclip_cycles);
if ( max_as < getMinCycleScore(cycle, total_cycles) )
return;
std::string anchor_seq = getSequenceString().substr( sequenceLen - globalAlignmentSettings.get_anchor_length(), globalAlignmentSettings.get_anchor_length());
FMTopDownIterator it(idx->idx);
if ( seqan2::goDown(it, seqan2::Dna5String(anchor_seq)) ) {
USeed seed ( new Seed() );
seed->max_as = max_as;
if ( cycle != globalAlignmentSettings.get_anchor_length() )
seed->cigar_data.emplace_back( ( cycle - globalAlignmentSettings.get_anchor_length()) , NO_MATCH ); // add softclip
seed->cigar_data.emplace_back(globalAlignmentSettings.get_anchor_length(), MATCH);
seed->vDesc = it.vDesc;
newSeeds.emplace_back(seed);
}
}
void ReadAlignment::extend_alignment(char bc) {
// cycle is not allowed to be > total_cycles
if ( total_cycles < cycle ) {
throw std::runtime_error("Cannot extend alignment: Cycle number is greater than the specified total number of cycles.");
}
appendNucleotideToSequenceStoreVector(bc);
// do not update the alignments when reading the first kmer_span-1 cycles
if ( cycle < globalAlignmentSettings.get_anchor_length() ) {
return;
}
SeedVec newSeeds;
// Reserve space for the worst case scenario: 4*M + 4*D + 1*I for each existing seed plus 1 new seed
newSeeds.reserve(9*seeds.size() + 1);
// extend existing seeds
char base = revtwobit_repr(bc & 3);
for ( auto seed = seeds.begin(); seed != seeds.end(); ++seed ) {
extendSeed(base, (*seed), newSeeds);
}
// create new seeds in defined intervals (intervals are handled inside createSeeds() function)
if ( isSeedingCycle(cycle) ) {
createSeeds(newSeeds);
}
// Move the new seeds to the seeds vector
seeds = std::move(newSeeds);
// Nothing to sort or erase
if ( seeds.size() <= 1 )
return;
// Sort the seeds by their vDesc positions (secondary: score)
std::sort(seeds.begin(), seeds.end(), PComp<USeed>);
// From here, erase seeds that have the same vDesc positions but a lower or similar score than a previous one
bool first_seed = true;
auto last_vDesc = seeds.front()->vDesc;
seeds.erase( std::remove_if( std::begin(seeds), std::end(seeds), [&](const USeed seed) mutable {
// Don't erase the first seed
if ( first_seed ) {
first_seed = false;
return false;
}
// Erase all "duplicates", which means the same vDesc position but a lower or similar score than the previous one.
bool is_duplicate = seed->vDesc == last_vDesc;
last_vDesc = seed->vDesc;
return is_duplicate;
} ), std::end(seeds) );
return;
}
CountType ReadAlignment::getBarcodeIndex() const {
// Get the barcodes of the read
std::string read_bc = getBarcodeString();
if ( read_bc.length() == 0 )
return UNDETERMINED;
uint16_t fragment_errors = 0;
uint16_t fragment_pos = 0;
uint16_t fragment_num = 0;
CountType matching_bc = UNDETERMINED;
// Iterate through all user-defined (multi-)barcodes
// That's quite complicated since the read barcodes are consecutive and the user barcodes are divided in vectors. // TODO: change that?
for ( uint16_t barcodeIndex = 0; barcodeIndex < globalAlignmentSettings.get_barcode_vector().size(); barcodeIndex++ ) {
// reset values for the barcode
fragment_errors = 0;
fragment_pos = 0;
fragment_num = 0;
matching_bc = barcodeIndex;
// for each base of the read barcode
for ( uint16_t nucl = 0; nucl < read_bc.length(); nucl++ ) {
// reset values for each barcode fragment
if ( fragment_pos >= (globalAlignmentSettings.get_barcode_vector()[barcodeIndex])[fragment_num].length() ) {
fragment_pos = 0;
fragment_num += 1;
fragment_errors = 0;
if ( fragment_num >= (globalAlignmentSettings.get_barcode_vector()[barcodeIndex]).size() ) {
throw std::runtime_error("Unexpected error: Tried to access more barcode segments than specified.");
}
}
// compare nucleotides and increase the number of fragment errors if not equal
if ( read_bc.at(nucl) != (globalAlignmentSettings.get_barcode_vector()[barcodeIndex])[fragment_num].at(fragment_pos) ) {
fragment_errors++;
}
// if too many errors in a fragment, break the loop for the barcode
if ( fragment_errors > globalAlignmentSettings.get_barcode_errors()[fragment_num] ) {
matching_bc = UNDETERMINED;
break;
}
fragment_pos += 1; // increment the fragment position
}
// if one barcode fulfilled the criteria, we can stop.
if ( matching_bc != UNDETERMINED )
break;
}
return matching_bc;
}
void ReadAlignment::disable() {
seeds.clear();
flags = 0;
if ( ! globalAlignmentSettings.get_keep_all_sequences() ) {
sequenceLen=0;
sequenceStoreVector.clear();
}
}
bool ReadAlignment::is_disabled() const {
return flags == 0;
}
PositionType ReadAlignment::get_SAM_start_pos(GenomePosType p, USeed & sd) const {
// Only valid if CIGAR string exist (should always be the case)
if ( sd->cigar_data.size() == 0 )
return std::numeric_limits<PositionType>::max();
// Retrieve position from the index
PositionType sam_pos = p.pos;
// REVERSE POSITIONS: position is already correct
if ( idx->isReverse(p.gid) ) {
return sam_pos;
}
// FORWARD POSITIONS: Compute start position
else {
sam_pos = idx->getSequenceLength(p.gid) - p.pos;
CountType cigLen = 0;
for ( auto el = sd->cigar_data.begin(); el != sd->cigar_data.end(); ++el ) {
if ( el->operation != INSERTION ) {
cigLen += el->length;
}
}
sam_pos -= cigLen;
// Begin pos in SAM specification ignores the softclip.
sam_pos += sd->get_softclip_length();
}
return sam_pos;
}
void ReadAlignment::sort_seeds_by_as() {
std::sort(seeds.begin(), seeds.end(), seed_comparison_by_as);
}
std::vector<uint8_t> ReadAlignment::getMAPQs() const {
// Vector that contains the final MAPQ values
std::vector<uint8_t> mapqs;
// True, if there is exactly one alignment for the read.
bool unique = true;
// Stop if not seeds.
if ( seeds.size() == 0 )
return mapqs;
// Check if the best alignment can still be unique.
else if ( seeds.size() != 1 )
unique = false;
// Vector that contains the MAPQ factor for each seed
// The MAPQ factor is the weight of all alignments of a read
std::vector<float> mapqFactors;
uint16_t minSingleErrorPenalty = getMinSingleErrorPenalty();
ScoreType maxPossibleScore = getMaxPossibleScore(cycle);
// Maximal number of single errors for the minimal score of the current cycle (this does not consider affine gap penalties)
float maxErrorsWithMinPenalty = float(maxPossibleScore - getMinCycleScore(cycle, total_cycles)) / float(minSingleErrorPenalty);
// Maximal error percentage for the minimal score of the current cycle ( this does not consider affine gap penalties)
float max_error_percent = float(100.0f * float(maxErrorsWithMinPenalty)) / float(total_cycles);
mapqs.reserve(seeds.size());
mapqFactors.reserve(seeds.size());
// Sum of all MAPQ factors
float mapqFactorsSum = 0;
// Minimal number of errors for the best seed. This is required to compute the MAPQ factor
float minReadErrors = float( getMaxPossibleScore(cycle) - seeds[0]->get_as() ) / getMinSingleErrorPenalty();
// Compute the sum of all MAPQ factors
for ( auto & s : seeds ) {
// Weight the minimal number of errors
float mapqFactor = std::pow ( 0.01f, (float( getMaxPossibleScore(cycle) - s->get_as() ) / getMinSingleErrorPenalty()) - minReadErrors );
mapqFactors.push_back(mapqFactor);
// For the sum, multiply the factor by the number of positions for this seed.
mapqFactorsSum += ( mapqFactor * ( s->vDesc.range.i2 - s->vDesc.range.i1 ) );
// Check if the best alignment can still be unique
if ( s->vDesc.range.i2 - s->vDesc.range.i1 > 1 )
unique = false;
}
// Compute the MAPQ for all seeds
for ( CountType i=0; i<seeds.size(); i++ ) {
// Always give 42 for unique, perfectly matching alignments
if ( unique && seeds[i]->get_as() == maxPossibleScore ) {
mapqs.push_back(42);
}
// Otherwise, apply MAPQ heuristics. Base Call Quality is not considered.
else {
float error_percent = float(100.0f * float(maxPossibleScore - seeds[i]->get_as()) / float(minSingleErrorPenalty)) / float(cycle);
float prob = 1.0f;
if ( seeds[i]->get_as() != maxPossibleScore ) {
prob = 0.49995f + ( 0.5f * ( 1.0f - std::pow( 10.0f, -5.0f - max_error_percent + (2.0f * error_percent))));
}
mapqs.push_back(prob2mapq(prob * mapqFactors[i] / mapqFactorsSum));
}
}
return mapqs;
}
void ReadAlignment::addReadInfoToRecord(seqan2::BamAlignmentRecord & record) const {
record.seq = getSequenceString();
record.qual = getQualityString();
}
|