1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
#include "alnstream.h"
//-------------------------------------------------------------------//
//------ The output Alignment Stream class ------------------------//
//-------------------------------------------------------------------//
oAlnStream::oAlnStream(uint16_t ln, uint16_t tl, uint16_t cl, CountType rl, uint32_t nr, uint64_t bs, uint8_t fmt):
lane(ln), tile(tl), cycle(cl), rlen(rl), num_reads(nr), num_written(0), buffer(bs,0), buf_size(bs), buf_pos(0), format(fmt), fstream(NULL), zfstream(Z_NULL), fname(""), flocked(false) {}
oAlnStream::~oAlnStream() {
funlock();
}
uint64_t oAlnStream::lz4write(const char* source, uint64_t size) {
// allocate buffer for the compressed data
std::vector<char> buf (LZ4_COMPRESSBOUND(size),0);
// compress the data
uint32_t compressed_size = LZ4_compress (source, buf.data(), size);
if (!compressed_size)
throw std::runtime_error("Error compressing data with LZ4.");
// write the block size
if ( !fwrite(&compressed_size, 1, sizeof(uint32_t), fstream) )
throw std::runtime_error("Error writing block size to file while compressing data with LZ4.");
// write the data chunk
if ( !fwrite(buf.data(), 1, compressed_size, fstream) )
throw std::runtime_error("Error writing data to file while compressing with LZ4.");
return size;
}
uint64_t oAlnStream::open(std::string f_name) {
fname = f_name;
flock();
// open the new Alignment file
switch (format) {
case 0: case 2:
fstream = fopen(fname.c_str(), "wb");
if (!fstream) {
funlock();
throw file_open_error( "Error opening file " + fname + " for writing.");
return 0;
}
break;
case 1:
zfstream = gzopen(fname.c_str(), "wb1"); //Don't compress too much, not enough bang for the buck
if (zfstream == Z_NULL) {
funlock();
throw file_open_error( "Error opening file " + fname + " for writing.");
return 0;
}
break;
default:
funlock();
throw file_format_error("Output file format not recognized.");
}
// write the header:
// calculate total size first
unsigned long int total_size = 0;
total_size += sizeof(uint16_t); // lane
total_size += sizeof(uint16_t); // tile
total_size += sizeof(CountType); // cycle
// read length
total_size += sizeof(CountType);
// number of reads
total_size += sizeof(uint32_t);
// create the vector to store the data
std::vector<char> data (total_size);
char* d = data.data();
// write the lane
memcpy(d,&lane,sizeof(uint16_t));
d += sizeof(uint16_t);
// write the tile
memcpy(d,&tile,sizeof(uint16_t));
d += sizeof(uint16_t);
// write the cycle
memcpy(d,&cycle,sizeof(CountType));
d += sizeof(CountType);
// write the read length
memcpy(d,&rlen,sizeof(CountType));
d += sizeof(CountType);
// write the number of reads
memcpy(d,&num_reads,sizeof(uint32_t));
d += sizeof(int32_t);
// write all data
uint64_t written = 0;
switch (format) {
case 0: case 2: written = fwrite(data.data(), 1, data.size(), fstream); break;
case 1: written = gzwrite(zfstream, data.data(), data.size()); break;
}
return written;
}
uint64_t oAlnStream::write_alignment(ReadAlignment * al) {
if ( (!fstream && (format == 0 || format == 2)) || (zfstream == Z_NULL && format == 1) ){
throw std::runtime_error("Could not write alignment to file. File handle not valid.");
}
if (num_written >= num_reads) {
throw std::length_error("Could not write alignment to file. All alignments were already written.");
}
std::vector<char> data = al->serialize();
uint64_t al_size = data.size();
// first, write the size of the serialized alignment (uint32_t = 4 bytes)
if (buf_pos+sizeof(uint32_t) <= buf_size) {
// directly copy if all 4 bytes have space in the buffer (should be almost always the case)
memcpy(buffer.data()+buf_pos,&al_size,sizeof(uint32_t));
buf_pos += sizeof(uint32_t);
}
else {
// copy the first bytes into temporary buffer to compose the alignment size
std::vector<char> temp (sizeof(uint32_t),0);
memcpy(temp.data(),&al_size,sizeof(uint32_t));
uint64_t first_part = buf_size-buf_pos;
memcpy(buffer.data()+buf_pos,temp.data(),first_part);
// write out buffer
switch (format) {
case 0: fwrite(buffer.data(), 1, buffer.size(), fstream); break;
case 1: gzwrite(zfstream, buffer.data(), buffer.size()); break;
case 2: lz4write(buffer.data(), buffer.size()); break;
}
// copy remaining data
memcpy(buffer.data(),temp.data()+first_part,sizeof(uint32_t)-first_part);
buf_pos = sizeof(uint32_t)-first_part;
}
// finally, write the serialized data
uint64_t copied = 0;
while (copied < al_size) {
uint64_t to_copy = std::min(al_size-copied,buf_size-buf_pos);
memcpy(buffer.data()+buf_pos, data.data()+copied, to_copy);
buf_pos += to_copy;
copied += to_copy;
// write buffer to disk if full
if(buf_pos >= buf_size){
switch (format) {
case 0: fwrite(buffer.data(), 1, buffer.size(), fstream); break;
case 1: gzwrite(zfstream, buffer.data(), buffer.size()); break;
case 2: lz4write(buffer.data(), buffer.size()); break;
}
buf_pos = 0;
}
}
num_written++;
return num_written;
}
bool oAlnStream::close() {
if ( ((format == 0 || format == 2) && fstream) || (format == 1 && zfstream != Z_NULL) ) {
// write remaining buffer content to file
switch (format) {
case 0: fwrite(buffer.data(), 1, buf_pos, fstream); break;
case 1: gzwrite(zfstream, buffer.data(), buf_pos); break;
case 2: lz4write(buffer.data(), buf_pos); break;
}
buf_pos = 0;
if (num_written == num_reads) {
switch (format) {
case 0: case 2: fclose(fstream); break;
case 1: gzclose(zfstream); break;
}
funlock();
return true;
}
else {
std::cerr << "Error: Could not close output alignment file! "<< num_reads - num_written <<" alignments missing." << std::endl;
return false;
}
}
else {
std::cerr << "Error: Could not close output alignment file! File handle not valid." << std::endl;
return false;
}
}
void oAlnStream::flock() {
fileLocks.lock(fname);
flocked = true;
}
void oAlnStream::funlock() {
if ( flocked ) {
fileLocks.unlock(fname);
}
}
//-------------------------------------------------------------------//
//------ The input Alignment Stream class -------------------------//
//-------------------------------------------------------------------//
iAlnStream::iAlnStream(uint64_t bs, uint8_t fmt):lane(0), tile(0), cycle(0), rlen(0), num_reads(0), num_loaded(0), buffer(bs,0), buf_size(bs), buf_pos(bs), format(fmt), fstream(NULL), zfstream(Z_NULL), fname(""), flocked(false) {}
iAlnStream::~iAlnStream() {
funlock();
}
// read function for lz4 decompression, reads one block of data
uint64_t iAlnStream::lz4read_block() {
// get the size of the next block
uint32_t compressed_size = 0;
if ( !fread(&compressed_size,sizeof(uint32_t),1,fstream) )
return 0;
// allocate buffer for the compressed data
std::vector<char> cbuf (compressed_size,0);
// read the data
if ( !fread(cbuf.data(),compressed_size,1,fstream) )
throw std::runtime_error("Malformed input file. Could not read next block.");
// decompress the data
int64_t r_size = LZ4_decompress_safe (cbuf.data(), buffer.data(), compressed_size, buffer.size());
if ( r_size < 0 )
throw std::runtime_error("Error while decompressing LZ4 compressed block.");
// update the current buffer size
buf_size = r_size;
return (uint64_t)r_size;
}
uint64_t iAlnStream::open(std::string f_name) {
if ( !file_exists(f_name) ) {
throw file_not_exist_error( " File " + fname + " does not exist.");
}
fname = f_name;
flock();
// open the new Alignment file
switch (format) {
case 0: case 2:
fstream = fopen(fname.c_str(), "rb");
if (!fstream) {
funlock();
throw file_open_error( "Error opening file " + fname + " for reading.");
return 0;
}
break;
case 1:
zfstream = gzopen(fname.c_str(), "rb");
if (zfstream == Z_NULL) {
funlock();
throw file_open_error( "Error opening file " + fname + " for reading.");
return 0;
}
break;
default:
funlock();
throw file_format_error("Input file format not recognized.");
}
// load the header:
uint64_t bytes = 0;
switch (format) {
case 0: case 2:
{
// read the lane
bytes += fread(&lane,sizeof(uint16_t),1,fstream);
// read the tile
bytes += fread(&tile,sizeof(uint16_t),1,fstream);
// read the cycle
bytes += fread(&cycle,sizeof(CountType),1,fstream);
// read the read length
bytes += fread(&rlen,sizeof(CountType),1,fstream);
// read the number of reads
bytes += fread(&num_reads,sizeof(uint32_t),1,fstream);
break;
}
case 1:
{
// read the lane
bytes += gzread(zfstream,&lane,sizeof(uint16_t));
// read the tile
bytes += gzread(zfstream,&tile,sizeof(uint16_t));
// read the cycle
bytes += gzread(zfstream,&cycle,sizeof(CountType));
// read the read length
bytes += gzread(zfstream,&rlen,sizeof(CountType));
// read the number of reads
bytes += gzread(zfstream,&num_reads,sizeof(uint32_t));
break;
}
}
return bytes;
}
ReadAlignment* iAlnStream::get_alignment() {
if ( (format==0 && !fstream) || (format==1 && zfstream == Z_NULL) ){
throw std::runtime_error("Could not load alignment from file. File handle not valid.");
}
if (num_loaded >= num_reads) {
throw std::length_error("Could not load alignment from file. All alignments were already loaded.");
}
// first, get the size of the serialized alignment (uint32_t = 4 bytes)
uint32_t al_size = 0;
if (buf_pos+sizeof(uint32_t) <= buf_size) {
// directly copy if all 4 bytes are in the buffer (should be almost always the case)
memcpy(&al_size,buffer.data()+buf_pos,sizeof(uint32_t));
buf_pos += sizeof(uint32_t);
}
else {
// copy the first bytes into temporary buffer to compose the alignment size
std::vector<char> temp (sizeof(uint32_t),0);
uint64_t first_part = buf_size-buf_pos;
memcpy(temp.data(),buffer.data()+buf_pos,first_part);
// load new buffer
switch (format) {
case 0:
fread(buffer.data(),1,buf_size,fstream);
break;
case 1:
gzread(zfstream,buffer.data(),buf_size);
break;
case 2:
lz4read_block();
break;
}
// copy remaining data and copy to variable
memcpy(temp.data()+first_part,buffer.data(),sizeof(uint32_t)-first_part);
buf_pos = sizeof(uint32_t)-first_part;
memcpy(&al_size,temp.data(),sizeof(uint32_t));
}
// then, copy the content to the data vector
std::vector<char> data(al_size,0);
uint64_t copied = 0;
while (copied < al_size) {
uint64_t to_copy = std::min(al_size-copied,buf_size-buf_pos);
memcpy(data.data()+copied, buffer.data()+buf_pos, to_copy);
buf_pos += to_copy;
copied += to_copy;
// read new buffer from disk if necessary
if(buf_pos >= buf_size){
switch (format) {
case 0:
fread(buffer.data(),1,buf_size,fstream);
break;
case 1:
gzread(zfstream,buffer.data(),buf_size);
break;
case 2:
lz4read_block();
break;
}
buf_pos = 0;
}
}
// finally, deserialize the alignment. Set total number of cycles to rlen and increase cycle number by 1.
ReadAlignment* ra = new ReadAlignment(rlen, cycle+1);
ra->deserialize(data.data());
num_loaded++;
return ra;
}
bool iAlnStream::close() {
if ( ((format==0 || format==2) && fstream) || (format==1 && zfstream != Z_NULL)) {
if (num_loaded == num_reads) {
switch (format) {
case 0: case 2:
fclose(fstream);
break;
case 1: gzclose(zfstream); break;
}
funlock();
return true;
}
else {
std::cerr << "Error: Could not close alignment file! "<< num_reads - num_loaded <<" alignments missing." << std::endl;
return false;
}
}
else {
throw std::runtime_error("Could not close alignment file. File handle not valid.");
}
}
void iAlnStream::flock() {
fileLocks.lock(fname);
flocked = true;
}
void iAlnStream::funlock() {
if ( flocked ) {
fileLocks.unlock(fname);
}
}
//-------------------------------------------------------------------//
//------ The StreamedAlignment class ------------------------------//
//-------------------------------------------------------------------//
void StreamedAlignment::create_directories() {
std::ostringstream path_stream;
if (globalAlignmentSettings.get_temp_dir() == "") {
path_stream << globalAlignmentSettings.get_root();
}
else {
path_stream << globalAlignmentSettings.get_temp_dir();
}
path_stream << "/L00" << lane;
boost::filesystem::create_directories(path_stream.str());
boost::filesystem::create_directories(globalAlignmentSettings.get_out_dir());
}
void StreamedAlignment::init_alignment(uint16_t mate) {
std::string out_fname = get_align_fname(lane, tile, 0, mate);
// get the number of reads in this tile by looking in the first bcl file
std::string first_cycle = get_bcl_fname(lane, tile, 1);
// extract the number of reads
uint32_t num_reads = num_reads_from_bcl(first_cycle);
// open output alignment stream
oAlnStream output (lane, tile, 0, rlen, num_reads, globalAlignmentSettings.get_block_size(), globalAlignmentSettings.get_compression_format());
output.open(out_fname);
// write empty read alignments for each read
for (uint32_t i = 0; i < num_reads; ++i) {
ReadAlignment * ra = new ReadAlignment(rlen, 0);
output.write_alignment(ra);
delete ra;
}
if(!output.close()) {
std::cerr << "Error: Could not create initial alignment file." << std::endl;
}
}
uint64_t StreamedAlignment::extend_alignment(uint16_t cycle, uint16_t read_no, uint16_t mate) {
// 1. Open the input file
//-----------------------
std::string in_fname = get_align_fname(lane, tile, cycle-1, mate);
std::string bcl_fname = get_bcl_fname(lane, tile, getSeqCycle(cycle, read_no));
std::string filter_fname = get_filter_fname(lane, tile);
iAlnStream input ( globalAlignmentSettings.get_block_size(), globalAlignmentSettings.get_compression_format() );
input.open(in_fname);
// Check for expected input file content
if ( input.get_cycle() != cycle - 1 ) {
throw std::runtime_error("Unexpected cycle number in input file when extending alignments.");
}
if ( input.get_lane() != lane ) {
throw std::runtime_error("Unexpected lane number in input file when extending alignments.");
}
if ( input.get_tile() != tile ) {
throw std::runtime_error("Unexpected tile number in input file when extending alignments.");
}
if ( input.get_rlen() != rlen ) {
throw std::runtime_error("Unexpected read length in input file when extending alignments.");
}
uint32_t num_reads = input.get_num_reads();
// 2. Open output stream
//----------------------------------------------------------
std::string out_fname = get_align_fname(lane, tile, cycle, mate);
oAlnStream output (lane, tile, cycle, rlen, num_reads, globalAlignmentSettings.get_block_size(), globalAlignmentSettings.get_compression_format());
output.open(out_fname);
// 3. Read the full BCL file (this is not too much)
//-------------------------------------------------
BclParser basecalls;
basecalls.open(bcl_fname);
// 4. Load the filter flags if filter file is available
// ----------------------------------------------------
FilterParser filters;
if (file_exists(filter_fname)) {
filters.open(filter_fname);
// extract the number of reads from the filter file
uint32_t num_reads_filter = filters.size();
if (num_reads != num_reads_filter){
std::string msg = std::string("Number of reads in filter file (") + std::to_string(num_reads_filter) + ") does not match the number of reads in BCL file " + in_fname + " (" + std::to_string(num_reads) + ").";
throw std::length_error(msg.c_str());
}
}
// 5. Extend alignments 1 by 1
//-------------------------------------------------
uint64_t num_seeds = 0;
for (uint64_t i = 0; i < num_reads; ++i) {
ReadAlignment* ra = input.get_alignment();
if (filters.size() > 0 && filters.has_next()) {
// filter file was found -> apply filter
if(filters.next()) {
ra->extend_alignment(basecalls.next());
num_seeds += ra->seeds.size();
}
else {
basecalls.next();
ra->disable();
}
}
// filter file was not found -> treat every alignment as valid
else {
ra->extend_alignment(basecalls.next());
num_seeds += ra->seeds.size();
}
output.write_alignment(ra);
delete ra;
}
// 6. Close files
//-------------------------------------------------
if (!(input.close() && output.close())) {
std::cerr << "Could not finish alignment!" << std::endl;
}
// 7. Delete old alignment file, if requested
//-------------------------------------------
if ( ! ( globalAlignmentSettings.is_keep_aln_files_cycle(getSeqCycle(cycle, globalAlignmentSettings.get_seq_by_mate(mate).id)-1) || globalAlignmentSettings.is_output_cycle(getSeqCycle(cycle, globalAlignmentSettings.get_seq_by_mate(mate).id)-1)) ) {
std::remove(in_fname.c_str());
}
return num_seeds;
}
void StreamedAlignment::extend_barcode(uint16_t bc_cycle, uint16_t read_cycle, uint16_t read_no, uint16_t mate) {
// 1. Open the input file
//-----------------------
std::string in_fname = get_align_fname(lane, tile, read_cycle, mate);
std::string bcl_fname = get_bcl_fname(lane, tile, getSeqCycle(bc_cycle, read_no));
std::string filter_fname = get_filter_fname(lane, tile);
iAlnStream input ( globalAlignmentSettings.get_block_size(), globalAlignmentSettings.get_compression_format() );
input.open(in_fname);
// Check for expected input file content
if ( input.get_cycle() != read_cycle ) {
throw std::runtime_error("Unexpected cycle number in input file when extending barcodes.");
}
if ( input.get_lane() != lane ) {
throw std::runtime_error("Unexpected lane number in input file when extending barcodes.");
}
if ( input.get_tile() != tile ) {
throw std::runtime_error("Unexpected tile number in input file when extending barcodes.");
}
uint32_t num_reads = input.get_num_reads();
// 2. Open output stream
//----------------------------------------------------------
std::string out_fname = in_fname + ".temp";
oAlnStream output (lane, tile, read_cycle, input.get_rlen(), num_reads, globalAlignmentSettings.get_block_size(), globalAlignmentSettings.get_compression_format());
output.open(out_fname);
// 3. Read the full BCL file (this is not too much)
//-------------------------------------------------
BclParser basecalls;
basecalls.open(bcl_fname);
// 4. Extend barcode sequence
//-------------------------------------------------
for (uint64_t i = 0; i < num_reads; ++i) {
char bc = basecalls.next();
ReadAlignment* ra = input.get_alignment();
ra->appendNucleotideToSequenceStoreVector(bc, true);
// filter invalid barcodes if new barcode fragment is completed
// TODO: Is done for each mate. Check if it's worth to change it (runtime should not be too high?)
if ( !globalAlignmentSettings.get_keep_all_barcodes() && bc_cycle == globalAlignmentSettings.get_seqs()[read_no].length && ra->getBarcodeIndex() == UNDETERMINED ) {
ra->disable();
}
output.write_alignment(ra);
delete ra;
}
// 5. Close files
//-------------------------------------------------
if (!(input.close() && output.close())) {
std::cerr << "Could not finish alignment!" << std::endl;
}
// 6. Move temp out file to the original file.
//-------------------------------------------
atomic_rename(out_fname.c_str(), in_fname.c_str());
}
StreamedAlignment& StreamedAlignment::operator=(const StreamedAlignment& other) {
if(&other == this)
return *this;
lane = other.lane;
tile = other.tile;
rlen = other.rlen;
return *this;
}
|