File: hilive.cpp

package info (click to toggle)
hilive 2.0a-5
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 956 kB
  • sloc: cpp: 4,723; python: 241; xml: 188; sh: 35; makefile: 14
file content (337 lines) | stat: -rwxr-xr-x 11,602 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#include "../lib/headers.h"
#include "../lib/definitions.h"
#include "../lib/global_variables.h"
#include "../lib/kindex.h"
#include "../lib/alnstream.h"
#include "../lib/alnout.h"
#include "../lib/parallel.h"
#include "../lib/argument_parser.h"
#include "../lib/tools_static.h"

AlignmentSettings globalAlignmentSettings;
KixRun* idx;
mutex_map<std::string> fileLocks;

/**
 * If a thread is used for output, call this function to start the next available output task.
 * @param alnout The deque of output controllers for each output cycle.
 * @return The written task. NO_TASK if no task was written (e.g., when no task is available).
 */
Task writeNextTaskToBam ( std::deque<AlnOut> & alnouts ) {

	// Search for the next task to write
	for ( auto& alnout : alnouts ) {

		// Only loop through non-finished output deques
		if ( !alnout.is_finished() ) {

			// Try to write the next task from the deque
			Task return_status = alnout.write_next();

			// Proceed with next deque if no task was written
			if ( return_status == NO_TASK ) {

				continue;

			}

			// Return the written task
			else {

				// Finalize the output for this cycle if this was the last task.
				if ( alnout.is_finished() ) {

					alnout.finalize();

				}

				return return_status;

			}

		}

	}

	return NO_TASK;
}

/**
 * Worker function for the alignment threads.
 * @param tasks Reference to the "to do" task queue
 * @param finished Reference to the "finished" task queue
 * @param failed Reference to the "failed" task queue
 * @param idx Pointer to the index object
 * @param surrender Control flag (threads stop if true)
 */
void worker (TaskQueue & tasks, TaskQueue & finished, TaskQueue & failed, std::deque<AlnOut> & alnouts, std::atomic<CountType> & writing_threads, bool & surrender ) {

    // Continue until surrender flag is set
    while ( !surrender ) {

    	{ // scope for block guard
    		atomic_increment_guard<CountType> block( writing_threads );

    		// Start an output task if output threads and tasks available. Allow at least 1 output thread.
    		if ( block.get_incremented_value() <= globalAlignmentSettings.get_num_out_threads() || block.get_incremented_value() == 1 ) {
    			Task written_task = writeNextTaskToBam( alnouts );
    			if ( written_task != NO_TASK ) {
    				continue;
    			}
    		}
    	}

        // Try to obtain a new task
        Task t = tasks.pop();

        // If "to do" task was found
        if ( t != NO_TASK ) {

            // Execute the task
            bool success = true;
            std::stringstream ss;

            try {

                StreamedAlignment s (t.lane, t.tile, t.seqEl.length);
                uint64_t num_seeds;

                // Seed extension if current read is sequence fragment.
                if ( !t.seqEl.isBarcode() ) {
                	num_seeds = s.extend_alignment(t.cycle,t.seqEl.id,t.seqEl.mate);
                	ss << "Task [" << t << "]: Found " << num_seeds << " seeds." << std::endl;

                }

                // Barcode extension if current read is barcode fragment
                else {
                	CountType mate = 1;
                	for ( ; mate <= globalAlignmentSettings.get_mates(); mate++ ) {
                		SequenceElement seqEl = globalAlignmentSettings.get_seq_by_mate(mate);
                		CountType current_mate_cycle = t.seqEl.id < seqEl.id ? 0 : seqEl.length;
                		s.extend_barcode(t.cycle, current_mate_cycle, t.seqEl.id, mate);
                	}
                	ss << "Task [" << t << "]: Extended barcode of " << --mate << " mates." << std::endl;
                }

            	std::cout << ss.str();

            }
            catch (const std::exception &e) {
                ss << "Failed to finish task [" << t << "]: " << e.what() << std::endl;
                std::cerr << ss.str();
                success = false;
            }

            // Push the task in the correct Task Queue (Finished or Failed)
            if (success) {

            	// Make previous cycle available for output.
            	// If current cycle is the last one of the segment and this is an output cycle
            	// or it is the very last cycle, make current cycle available.
            	std::vector<CountType> output_cycles;
            	CountType seqCycle = getSeqCycle(t.cycle, t.seqEl.id);

            	// Make previous cycle available if it is an output cycle and > 1 (to prevent double output of the last cycle of a segment)
            	if ( t.cycle > 1 && globalAlignmentSettings.is_output_cycle( seqCycle - 1 ) )
            		output_cycles.push_back(seqCycle-1);

            	// Make current cycle available if it is the very last cycle or the last segment cycle and an output cycle.
            	if ( seqCycle == globalAlignmentSettings.get_cycles() || ( globalAlignmentSettings.is_output_cycle( seqCycle ) && t.cycle == t.seqEl.length ) )
            		output_cycles.push_back(seqCycle);

            	// Actually make the output cycles available.
            	for ( auto cycle : output_cycles ) {
            		for ( auto& alnout : alnouts ) {
            			alnout.set_task_available( Task(t.lane, t.tile, cycle));
            		}
            	}

        		finished.push(t);

            }
            else {
                failed.push(t);
            }

        }

        else {
            // send this thread to sleep for a second if (and only if) no task was available
            std::this_thread::sleep_for (std::chrono::milliseconds(1000));
        }

    }  
}

/**
 * Main function that organizes the overall structure of the program.
 * @param argc Number of arguments
 * @param argv Argument array
 * @return 0 on success, other numbers on error
 */
int main(int argc, const char* argv[]) {

	// Variable for runtime measurement
    time_t t_start = time(NULL);

    // Program start output
	std::cout << std::endl << "__________________________________________________" << std::endl << std::endl << "HiLive v"<< HiLive_VERSION_MAJOR << "." << HiLive_VERSION_MINOR <<
			" - Realtime Alignment of Illumina Reads" << std::endl << "__________________________________________________" << std::endl<< std::endl;

    // Parse command line arguments
    HiLiveArgumentParser argumentParser(argc, argv);
	int parser_returnStatus = argumentParser.parseCommandLineArguments();

	// Successful execution of "help" or "license"
	if ( parser_returnStatus == 1 ) {
		exit(EXIT_SUCCESS);
	}

	// Parsing error
	else if ( parser_returnStatus == -1 ) {
		std::cout << "Parsing of command line options failed. For help, type 'hilive --help'." << std::endl;
		exit(EXIT_FAILURE);
	}

    // Load the index
    std::cout << "Loading Index ... " << std::endl;
    idx = new KixRun();

    idx->load_metadata( globalAlignmentSettings.get_index_fname() );
    idx->load_fmindex( globalAlignmentSettings.get_index_fname() );

  	// Write the alignment settings to an XML file
  	boost::property_tree::ptree xml_out = globalAlignmentSettings.to_ptree();
  	if ( ! write_ini(xml_out, get_config_fname()) )
  		exit(EXIT_FAILURE);

    // Create the overall agenda
    Agenda agenda (globalAlignmentSettings.get_cycles(), globalAlignmentSettings.get_lanes(), globalAlignmentSettings.get_tiles(), globalAlignmentSettings.get_start_cycle());


    // Wait for the first cycle to be written
    std::cout << "Waiting for the first cycle to finish..." << std::endl;
    while ( ! agenda.cycle_available(globalAlignmentSettings.get_start_cycle()) ) {
        agenda.update_status();
        std::this_thread::sleep_for(std::chrono::milliseconds(1000));
    }

    // Write empty alignment file for each tile and for each sequence read
    std::cout << "Initializing Alignment files..." << std::endl;
    for (uint16_t ln : globalAlignmentSettings.get_lanes()) {
        for (uint16_t tl : globalAlignmentSettings.get_tiles()) {
            CountType mate = 1;
            for ( ; mate <= globalAlignmentSettings.get_mates(); mate++ ) {

            	// Don't init files if "--continue" was used to start in a later cycle.
            	if ( getMateCycle(mate, globalAlignmentSettings.get_start_cycle()) > 1 )
            			continue;


                StreamedAlignment s (ln, tl, globalAlignmentSettings.get_seq_by_mate(mate).length);
                s.create_directories();
                s.init_alignment(mate);
            }
        }
    }

    std::cout << "First cycle complete. Starting alignment." << std::endl;



    // Set up the queues
    TaskQueue toDoQ;
    TaskQueue finishedQ;
    TaskQueue failedQ;

    // Init output controller for each output cycle. TODO: check if it is possible to replace the deque by a map (cycle, alnout).
    std::deque<AlnOut> alnouts;
    for ( CountType cycle : globalAlignmentSettings.get_output_cycles() ) {
    	if ( cycle >= globalAlignmentSettings.get_start_cycle() )
    		alnouts.emplace_back(globalAlignmentSettings.get_lanes(), globalAlignmentSettings.get_tiles(), cycle);
    }

    // Number of threads currently used for writing output.
    std::atomic<CountType> writing_threads(0);

    // Flag to stop the threads.
    bool surrender = false;

    // Create the threads
    std::cout << "Creating " << globalAlignmentSettings.get_num_threads() << " threads." << std::endl;
    std::vector<std::thread> workers;
    for (int i = 0; i < globalAlignmentSettings.get_num_threads(); i++) {
        workers.push_back(std::thread(worker, std::ref(toDoQ), std::ref(finishedQ), std::ref(failedQ), std::ref(alnouts), std::ref(writing_threads), std::ref(surrender)));
    }

    // Process all tasks on the agenda
    while ( !agenda.finished() ) {

        // check for new BCL files and update the agenda status
        agenda.update_status();

        // fill the To Do queue with tasks from the agenda
        while(true) {
            Task t = agenda.get_task();
            if (t == NO_TASK)
                break;
            toDoQ.push(t);
            agenda.set_status(t,RUNNING);
        }

        // take a look in the finished queue and process finished tasks
        while(true) {
            Task t = finishedQ.pop();
            if (t == NO_TASK)
                break;
            agenda.set_status(t,FINISHED);
        }

        // take a look in the failed queue and process failed tasks
        while(true) {
            Task t = failedQ.pop();
            if (t == NO_TASK)
                break;
            if (agenda.get_status(t) == RUNNING) {
                // give it one more chance
                agenda.set_status(t,RETRY);
                toDoQ.push(t);
            }
            else {
                agenda.set_status(t,FAILED);
                std::cout << "Task failed! " << t << std::endl;
            }
        }

        // take a small break
        std::this_thread::sleep_for (std::chrono::milliseconds(100));
    }  

    std::cout << "Finished all alignments." << std::endl;
    std::cout << "Waiting for output tasks..." << std::endl;

    for ( auto& alnout : alnouts ) {
    	while ( !alnout.is_finalized() ) {
    		; // wait
    	}
    }

    // Clear the vector will destruct all elements.
    alnouts.clear();

    std::cout << "Finished output tasks." << std::endl;

    // Halt the threads
    surrender = true;
    for (auto& w : workers) {
        w.join();
    }

    std::cout << "All threads joined." << std::endl;
//    std::cout << "Total mapping time: " << time(NULL) - t_start << " s" << std::endl << std::endl;
    delete idx;

    std::cout << "Total run time: " << time(NULL) - t_start << " s" << std::endl;
    exit(EXIT_SUCCESS);
}