1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
// MIT License
//
// Copyright (c) 2020 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "common_benchmark_header.hpp"
// HIP API
#include "hipcub/block/block_reduce.hpp"
#include "hipcub/thread/thread_operators.hpp"
#ifndef DEFAULT_N
const size_t DEFAULT_N = 1024 * 1024 * 32;
#endif
template<class Runner,
class T,
unsigned int BlockSize,
unsigned int ItemsPerThread,
unsigned int Trials>
__global__ __launch_bounds__(BlockSize) void kernel(const T* input, T* output)
{
Runner::template run<T, BlockSize, ItemsPerThread, Trials>(input, output);
}
template<hipcub::BlockReduceAlgorithm algorithm>
struct reduce
{
template<class T, unsigned int BlockSize, unsigned int ItemsPerThread, unsigned int Trials>
__device__ static void run(const T* input, T* output)
{
const unsigned int i = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
T values[ItemsPerThread];
T reduced_value;
for(unsigned int k = 0; k < ItemsPerThread; k++)
{
values[k] = input[i * ItemsPerThread + k];
}
using breduce_t = hipcub::BlockReduce<T, BlockSize, algorithm>;
__shared__ typename breduce_t::TempStorage storage;
#pragma nounroll
for(unsigned int trial = 0; trial < Trials; trial++)
{
reduced_value = breduce_t(storage).Reduce(values, hipcub::Sum());
values[0] = reduced_value;
}
if(hipThreadIdx_x == 0)
{
output[hipBlockIdx_x] = reduced_value;
}
}
};
template<class Benchmark,
class T,
unsigned int BlockSize,
unsigned int ItemsPerThread,
unsigned int Trials = 100>
void run_benchmark(benchmark::State& state, hipStream_t stream, size_t N)
{
// Make sure size is a multiple of BlockSize
constexpr auto items_per_block = BlockSize * ItemsPerThread;
const auto size = items_per_block * ((N + items_per_block - 1) / items_per_block);
// Allocate and fill memory
std::vector<T> input(size, T(1));
T* d_input;
T* d_output;
HIP_CHECK(hipMalloc(&d_input, size * sizeof(T)));
HIP_CHECK(hipMalloc(&d_output, size * sizeof(T)));
HIP_CHECK(hipMemcpy(d_input, input.data(), size * sizeof(T), hipMemcpyHostToDevice));
HIP_CHECK(hipDeviceSynchronize());
for(auto _ : state)
{
auto start = std::chrono::high_resolution_clock::now();
hipLaunchKernelGGL(HIP_KERNEL_NAME(kernel<Benchmark, T, BlockSize, ItemsPerThread, Trials>),
dim3(size / items_per_block),
dim3(BlockSize),
0,
stream,
d_input,
d_output);
HIP_CHECK(hipPeekAtLastError());
HIP_CHECK(hipDeviceSynchronize());
auto end = std::chrono::high_resolution_clock::now();
auto elapsed_seconds
= std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
state.SetIterationTime(elapsed_seconds.count());
}
state.SetBytesProcessed(state.iterations() * size * sizeof(T) * Trials);
state.SetItemsProcessed(state.iterations() * size * Trials);
HIP_CHECK(hipFree(d_input));
HIP_CHECK(hipFree(d_output));
}
// IPT - items per thread
#define CREATE_BENCHMARK(T, BS, IPT) \
benchmark::RegisterBenchmark(std::string("block_reduce<data_type:" #T ",block_size:" #BS \
",items_per_thread:" #IPT ",sub_algorithm_name:" \
+ algorithm_name + ">.method_name:" + method_name) \
.c_str(), \
&run_benchmark<Benchmark, T, BS, IPT>, \
stream, \
size)
#define BENCHMARK_TYPE(type, block) \
CREATE_BENCHMARK(type, block, 1), CREATE_BENCHMARK(type, block, 2), \
CREATE_BENCHMARK(type, block, 3), CREATE_BENCHMARK(type, block, 4), \
CREATE_BENCHMARK(type, block, 8), CREATE_BENCHMARK(type, block, 11), \
CREATE_BENCHMARK(type, block, 16)
template<class Benchmark>
void add_benchmarks(std::vector<benchmark::internal::Benchmark*>& benchmarks,
const std::string& method_name,
const std::string& algorithm_name,
hipStream_t stream,
size_t size)
{
std::vector<benchmark::internal::Benchmark*> new_benchmarks = {
// When block size is less than or equal to warp size
BENCHMARK_TYPE(int, 64),
BENCHMARK_TYPE(float, 64),
BENCHMARK_TYPE(double, 64),
BENCHMARK_TYPE(int8_t, 64),
BENCHMARK_TYPE(uint8_t, 64),
BENCHMARK_TYPE(int, 256),
BENCHMARK_TYPE(float, 256),
BENCHMARK_TYPE(double, 256),
BENCHMARK_TYPE(int8_t, 256),
BENCHMARK_TYPE(uint8_t, 256),
};
benchmarks.insert(benchmarks.end(), new_benchmarks.begin(), new_benchmarks.end());
}
int main(int argc, char* argv[])
{
cli::Parser parser(argc, argv);
parser.set_optional<size_t>("size", "size", DEFAULT_N, "number of values");
parser.set_optional<int>("trials", "trials", -1, "number of iterations");
parser.run_and_exit_if_error();
// Parse argv
benchmark::Initialize(&argc, argv);
const size_t size = parser.get<size_t>("size");
const int trials = parser.get<int>("trials");
std::cout << "benchmark_block_reduce" << std::endl;
// HIP
hipStream_t stream = 0; // default
hipDeviceProp_t devProp;
int device_id = 0;
HIP_CHECK(hipGetDevice(&device_id));
HIP_CHECK(hipGetDeviceProperties(&devProp, device_id));
std::cout << "[HIP] Device name: " << devProp.name << std::endl;
// Add benchmarks
std::vector<benchmark::internal::Benchmark*> benchmarks;
// using_warp_scan
using reduce_uwr_t = reduce<hipcub::BlockReduceAlgorithm::BLOCK_REDUCE_WARP_REDUCTIONS>;
add_benchmarks<reduce_uwr_t>(benchmarks,
"reduce",
"BLOCK_REDUCE_WARP_REDUCTIONS",
stream,
size);
// raking reduce
using reduce_rr_t = reduce<hipcub::BlockReduceAlgorithm::BLOCK_REDUCE_RAKING>;
add_benchmarks<reduce_rr_t>(benchmarks, "reduce", "BLOCK_REDUCE_RAKING", stream, size);
// raking reduce commutative only
using reduce_rrco_t
= reduce<hipcub::BlockReduceAlgorithm::BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY>;
add_benchmarks<reduce_rrco_t>(benchmarks,
"reduce",
"BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY",
stream,
size);
// Use manual timing
for(auto& b : benchmarks)
{
b->UseManualTime();
b->Unit(benchmark::kMillisecond);
}
// Force number of iterations
if(trials > 0)
{
for(auto& b : benchmarks)
{
b->Iterations(trials);
}
}
// Run benchmarks
benchmark::RunSpecifiedBenchmarks();
return 0;
}
|