File: benchmark_utils.hpp

package info (click to toggle)
hipcub 6.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,528 kB
  • sloc: cpp: 56,703; python: 564; sh: 365; makefile: 118; xml: 26
file content (520 lines) | stat: -rw-r--r-- 17,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
// MIT License
//
// Copyright (c) 2020-2024 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifndef HIPCUB_BENCHMARK_UTILS_HPP_
#define HIPCUB_BENCHMARK_UTILS_HPP_

#ifndef BENCHMARK_UTILS_INCLUDE_GUARD
    #error benchmark_utils.hpp must ONLY be included by common_benchmark_header.hpp. Please include common_benchmark_header.hpp instead.
#endif

// hipCUB API
#ifdef __HIP_PLATFORM_AMD__
    #include "hipcub/backend/rocprim/util_ptx.hpp"
#elif defined(__HIP_PLATFORM_NVIDIA__)
    #include "hipcub/config.hpp"
    #include <cub/util_ptx.cuh>
#endif

#include "hipcub/tuple.hpp"

#ifndef HIPCUB_CUB_API
    #define HIPCUB_WARP_THREADS_MACRO warpSize
#else
    #define HIPCUB_WARP_THREADS_MACRO CUB_PTX_WARP_THREADS
#endif

namespace benchmark_utils
{
const size_t default_max_random_size = 1024 * 1024;
// get_random_data() generates only part of sequence and replicates it,
// because benchmarks usually do not need "true" random sequence.
template<class T>
inline auto
    get_random_data(size_t size, T min, T max, size_t max_random_size = default_max_random_size) ->
    typename std::enable_if<std::is_integral<T>::value, std::vector<T>>::type
{
    std::random_device         rd;
    std::default_random_engine gen(rd());
    using distribution_type = typename std::conditional<(sizeof(T) == 1), short, T>::type;
    std::uniform_int_distribution<distribution_type> distribution(min, max);
    std::vector<T>                                   data(size);
    std::generate(data.begin(),
                  data.begin() + std::min(size, max_random_size),
                  [&]() { return distribution(gen); });
    for(size_t i = max_random_size; i < size; i += max_random_size)
    {
        std::copy_n(data.begin(), std::min(size - i, max_random_size), data.begin() + i);
    }
    return data;
}

template<class T>
inline auto
    get_random_data(size_t size, T min, T max, size_t max_random_size = default_max_random_size) ->
    typename std::enable_if<std::is_floating_point<T>::value, std::vector<T>>::type
{
    std::random_device                rd;
    std::default_random_engine        gen(rd());
    std::uniform_real_distribution<T> distribution(min, max);
    std::vector<T>                    data(size);
    std::generate(data.begin(),
                  data.begin() + std::min(size, max_random_size),
                  [&]() { return distribution(gen); });
    for(size_t i = max_random_size; i < size; i += max_random_size)
    {
        std::copy_n(data.begin(), std::min(size - i, max_random_size), data.begin() + i);
    }
    return data;
}

template<class T>
inline std::vector<T>
    get_random_data01(size_t size, float p, size_t max_random_size = default_max_random_size)
{
    std::random_device          rd;
    std::default_random_engine  gen(rd());
    std::bernoulli_distribution distribution(p);
    std::vector<T>              data(size);
    std::generate(data.begin(),
                  data.begin() + std::min(size, max_random_size),
                  [&]() { return distribution(gen); });
    for(size_t i = max_random_size; i < size; i += max_random_size)
    {
        std::copy_n(data.begin(), std::min(size - i, max_random_size), data.begin() + i);
    }
    return data;
}

template<class T>
inline T get_random_value(T min, T max)
{
    return get_random_data(1, min, max)[0];
}

// Can't use std::prefix_sum for inclusive/exclusive scan, because
// it does not handle short[] -> int(int a, int b) { a + b; } -> int[]
// they way we expect. That's because sum in std::prefix_sum's implementation
// is of type typename std::iterator_traits<InputIt>::value_type (short)
template<class InputIt, class OutputIt, class BinaryOperation>
OutputIt host_inclusive_scan(InputIt first, InputIt last, OutputIt d_first, BinaryOperation op)
{
    using input_type  = typename std::iterator_traits<InputIt>::value_type;
    using output_type = typename std::iterator_traits<OutputIt>::value_type;
    using result_type =
        typename std::conditional<std::is_void<output_type>::value, input_type, output_type>::type;

    if(first == last)
        return d_first;

    result_type sum = *first;
    *d_first        = sum;

    while(++first != last)
    {
        sum        = op(sum, static_cast<result_type>(*first));
        *++d_first = sum;
    }
    return ++d_first;
}

template<class InputIt, class T, class OutputIt, class BinaryOperation>
OutputIt host_exclusive_scan(
    InputIt first, InputIt last, T initial_value, OutputIt d_first, BinaryOperation op)
{
    using input_type  = typename std::iterator_traits<InputIt>::value_type;
    using output_type = typename std::iterator_traits<OutputIt>::value_type;
    using result_type =
        typename std::conditional<std::is_void<output_type>::value, input_type, output_type>::type;

    if(first == last)
        return d_first;

    result_type sum = initial_value;
    *d_first        = initial_value;

    while((first + 1) != last)
    {
        sum        = op(sum, static_cast<result_type>(*first));
        *++d_first = sum;
        first++;
    }
    return ++d_first;
}

template<class InputIt,
         class KeyIt,
         class T,
         class OutputIt,
         class BinaryOperation,
         class KeyCompare>
OutputIt host_exclusive_scan_by_key(InputIt         first,
                                    InputIt         last,
                                    KeyIt           k_first,
                                    T               initial_value,
                                    OutputIt        d_first,
                                    BinaryOperation op,
                                    KeyCompare      key_compare_op)
{
    using input_type  = typename std::iterator_traits<InputIt>::value_type;
    using output_type = typename std::iterator_traits<OutputIt>::value_type;
    using result_type =
        typename std::conditional<std::is_void<output_type>::value, input_type, output_type>::type;

    if(first == last)
        return d_first;

    result_type sum = initial_value;
    *d_first        = initial_value;

    while((first + 1) != last)
    {
        if(key_compare_op(*k_first, *++k_first))
        {
            sum = op(sum, static_cast<result_type>(*first));
        } else
        {
            sum = initial_value;
        }
        *++d_first = sum;
        first++;
    }
    return ++d_first;
}

template<class T, class U = T>
struct custom_type
{
    using first_type  = T;
    using second_type = U;

    T x;
    U y;

    HIPCUB_HOST_DEVICE inline constexpr custom_type() : x(T()), y(U()) {}

    HIPCUB_HOST_DEVICE inline constexpr custom_type(T xx, U yy) : x(xx), y(yy) {}

    HIPCUB_HOST_DEVICE inline constexpr custom_type(T xy) : x(xy), y(xy) {}

    template<class V, class W = V>
    HIPCUB_HOST_DEVICE inline custom_type(const custom_type<V, W>& other) : x(other.x), y(other.y)
    {}

#ifndef HIPCUB_CUB_API
    HIPCUB_HOST_DEVICE inline ~custom_type() = default;
#endif

    HIPCUB_HOST_DEVICE inline custom_type& operator=(const custom_type& other)
    {
        x = other.x;
        y = other.y;
        return *this;
    }

    HIPCUB_HOST_DEVICE inline custom_type operator+(const custom_type& rhs) const
    {
        return custom_type(x + rhs.x, y + rhs.y);
    }

    HIPCUB_HOST_DEVICE inline custom_type operator-(const custom_type& other) const
    {
        return custom_type(x - other.x, y - other.y);
    }

    HIPCUB_HOST_DEVICE inline bool operator<(const custom_type& rhs) const
    {
        // intentionally suboptimal choice for short-circuting,
        // required to generate more performant device code
        return ((x == rhs.x && y < rhs.y) || x < rhs.x);
    }

    HIPCUB_HOST_DEVICE inline bool operator>(const custom_type& other) const
    {
        return (x > other.x || (x == other.x && y > other.y));
    }

    HIPCUB_HOST_DEVICE inline bool operator==(const custom_type& rhs) const
    {
        return x == rhs.x && y == rhs.y;
    }

    HIPCUB_HOST_DEVICE inline bool operator!=(const custom_type& other) const
    {
        return !(*this == other);
    }

    HIPCUB_HOST_DEVICE custom_type& operator+=(const custom_type& rhs)
    {
        this->x += rhs.x;
        this->y += rhs.y;
        return *this;
    }
};

template<typename>
struct is_custom_type : std::false_type
{};

template<class T, class U>
struct is_custom_type<custom_type<T, U>> : std::true_type
{};

template<class CustomType>
struct custom_type_decomposer
{
    static_assert(is_custom_type<CustomType>::value,
                  "custom_type_decomposer can only be used with instantiations "
                  "of custom_type");

    using T = typename CustomType::first_type;
    using U = typename CustomType::second_type;

    HIPCUB_HOST_DEVICE ::hipcub::tuple<T&, U&> operator()(CustomType& key) const
    {
        return ::hipcub::tuple<T&, U&>{key.x, key.y};
    }
};

template<class T, class enable = void>
struct generate_limits;

template<class T>
struct generate_limits<T, std::enable_if_t<std::is_integral<T>::value>>
{
    static inline T min()
    {
        return std::numeric_limits<T>::min();
    }
    static inline T max()
    {
        return std::numeric_limits<T>::max();
    }
};

template<class T>
struct generate_limits<T, std::enable_if_t<is_custom_type<T>::value>>
{
    using F = typename T::first_type;
    using S = typename T::second_type;
    static inline T min()
    {
        return T(generate_limits<F>::min(), generate_limits<S>::min());
    }
    static inline T max()
    {
        return T(generate_limits<F>::max(), generate_limits<S>::max());
    }
};

template<class T>
struct generate_limits<T, std::enable_if_t<std::is_floating_point<T>::value>>
{
    static inline T min()
    {
        return T(-1000);
    }
    static inline T max()
    {
        return T(1000);
    }
};

template<class T>
inline auto get_random_data(size_t size, T min, T max, size_t max_random_size = 1024 * 1024) ->
    typename std::enable_if<is_custom_type<T>::value, std::vector<T>>::type
{
    using first_type  = typename T::first_type;
    using second_type = typename T::second_type;
    std::vector<T> data(size);
    auto           fdata = get_random_data<first_type>(size, min.x, max.x, max_random_size);
    auto           sdata = get_random_data<second_type>(size, min.y, max.y, max_random_size);
    for(size_t i = 0; i < size; i++)
    {
        data[i] = T(fdata[i], sdata[i]);
    }
    return data;
}

template<class T>
inline auto get_random_data(size_t size, T min, T max, size_t max_random_size = 1024 * 1024) ->
    typename std::enable_if<!is_custom_type<T>::value
                                && !std::is_same<decltype(max.x), void>::value,
                            std::vector<T>>::type
{

    using field_type = decltype(max.x);
    std::vector<T> data(size);
    auto           field_data = get_random_data<field_type>(size, min.x, max.x, max_random_size);
    for(size_t i = 0; i < size; i++)
    {
        data[i] = T(field_data[i]);
    }
    return data;
}

template<typename T>
std::vector<T>
    get_random_segments(const size_t size, const size_t max_segment_length, const int seed_value)
{
    static_assert(std::is_arithmetic<T>::value, "Key type must be arithmetic");

    std::default_random_engine            prng(seed_value);
    std::uniform_int_distribution<size_t> segment_length_distribution(max_segment_length);
    using key_distribution_type = std::conditional_t<std::is_integral<T>::value,
                                                     std::uniform_int_distribution<T>,
                                                     std::uniform_real_distribution<T>>;
    key_distribution_type key_distribution(std::numeric_limits<T>::max());
    std::vector<T>        keys(size);

    size_t keys_start_index = 0;
    while(keys_start_index < size)
    {
        const size_t new_segment_length = segment_length_distribution(prng);
        const size_t new_segment_end    = std::min(size, keys_start_index + new_segment_length);
        const T      key                = key_distribution(prng);
        std::fill(std::next(keys.begin(), keys_start_index),
                  std::next(keys.begin(), new_segment_end),
                  key);
        keys_start_index += new_segment_length;
    }
    return keys;
}

bool is_warp_size_supported(const unsigned required_warp_size)
{
    return HIPCUB_HOST_WARP_THREADS >= required_warp_size;
}

template<unsigned int LogicalWarpSize>
__device__ constexpr bool device_test_enabled_for_warp_size_v
    = HIPCUB_DEVICE_WARP_THREADS >= LogicalWarpSize;

template<typename Iterator>
using it_value_t = typename std::iterator_traits<Iterator>::value_type;

using engine_type = std::default_random_engine;

// generate_random_data_n() generates only part of sequence and replicates it,
// because benchmarks usually do not need "true" random sequence.
template<class OutputIter, class U, class V, class Generator>
inline auto generate_random_data_n(
    OutputIter it, size_t size, U min, V max, Generator& gen, size_t max_random_size = 1024 * 1024)
    -> typename std::enable_if_t<std::is_integral<it_value_t<OutputIter>>::value, OutputIter>
{
    using T = it_value_t<OutputIter>;

    using dis_type = typename std::conditional<(sizeof(T) == 1), short, T>::type;
    std::uniform_int_distribution<dis_type> distribution((T)min, (T)max);
    std::generate_n(it, std::min(size, max_random_size), [&]() { return distribution(gen); });
    for(size_t i = max_random_size; i < size; i += max_random_size)
    {
        std::copy_n(it, std::min(size - i, max_random_size), it + i);
    }
    return it + size;
}

template<class OutputIterator, class U, class V, class Generator>
inline auto generate_random_data_n(OutputIterator it,
                                   size_t         size,
                                   U              min,
                                   V              max,
                                   Generator&     gen,
                                   size_t         max_random_size = 1024 * 1024)
    -> std::enable_if_t<std::is_floating_point<it_value_t<OutputIterator>>::value, OutputIterator>
{
    using T = typename std::iterator_traits<OutputIterator>::value_type;

    std::uniform_real_distribution<T> distribution((T)min, (T)max);
    std::generate_n(it, std::min(size, max_random_size), [&]() { return distribution(gen); });
    for(size_t i = max_random_size; i < size; i += max_random_size)
    {
        std::copy_n(it, std::min(size - i, max_random_size), it + i);
    }
    return it + size;
}

template<std::size_t Size, std::size_t Alignment>
struct alignas(Alignment) custom_aligned_type
{
    unsigned char data[Size];
};

template<typename T,
         typename U,
         std::enable_if_t<std::is_integral<T>::value && std::is_unsigned<U>::value, int> = 0>
inline constexpr auto ceiling_div(const T a, const U b)
{
    return a / b + (a % b > 0 ? 1 : 0);
}

} // namespace benchmark_utils

// Need for hipcub::DeviceReduce::Min/Max etc.
namespace std
{
template<>
class numeric_limits<benchmark_utils::custom_type<int>>
{
    using T = typename benchmark_utils::custom_type<int>;

public:
    static constexpr inline T min()
    {
        return std::numeric_limits<typename T::first_type>::min();
    }

    static constexpr inline T max()
    {
        return std::numeric_limits<typename T::first_type>::max();
    }

    static constexpr inline T lowest()
    {
        return std::numeric_limits<typename T::first_type>::lowest();
    }
};

template<>
class numeric_limits<benchmark_utils::custom_type<float>>
{
    using T = typename benchmark_utils::custom_type<float>;

public:
    static constexpr inline T min()
    {
        return std::numeric_limits<typename T::first_type>::min();
    }

    static constexpr inline T max()
    {
        return std::numeric_limits<typename T::first_type>::max();
    }

    static constexpr inline T lowest()
    {
        return std::numeric_limits<typename T::first_type>::lowest();
    }
};
} // namespace std

#endif // HIPCUB_BENCHMARK_UTILS_HPP_