File: benchmark_warp_reduce.cpp

package info (click to toggle)
hipcub 6.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,528 kB
  • sloc: cpp: 56,703; python: 564; sh: 365; makefile: 118; xml: 26
file content (271 lines) | stat: -rw-r--r-- 10,499 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// MIT License
//
// Copyright (c) 2020-2024 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#include "common_benchmark_header.hpp"

// HIP API
#include "hipcub/warp/warp_reduce.hpp"

#ifndef DEFAULT_N
const size_t DEFAULT_N = 1024 * 1024 * 32;
#endif

template<class T, unsigned int WarpSize, unsigned int Trials>
__global__ __launch_bounds__(64)
auto warp_reduce_kernel(const T* d_input, T* d_output)
    -> std::enable_if_t<benchmark_utils::device_test_enabled_for_warp_size_v<WarpSize>>
{
    const unsigned int i = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;

    auto value = d_input[i];

    using wreduce_t = hipcub::WarpReduce<T, WarpSize>;
    __shared__ typename wreduce_t::TempStorage storage;
    auto                                       reduce_op = hipcub::Sum();
#pragma nounroll
    for(unsigned int trial = 0; trial < Trials; trial++)
    {
        value = wreduce_t(storage).Reduce(value, reduce_op);
    }

    d_output[i] = value;
}

template<class T, unsigned int WarpSize, unsigned int Trials>
__global__ __launch_bounds__(64)
auto warp_reduce_kernel(const T* /*d_input*/, T* /*d_output*/)
    -> std::enable_if_t<!benchmark_utils::device_test_enabled_for_warp_size_v<WarpSize>>
{}

template<class T, class Flag, unsigned int WarpSize, unsigned int Trials>
__global__ __launch_bounds__(64)
auto segmented_warp_reduce_kernel(const T* d_input, Flag* d_flags, T* d_output)
    -> std::enable_if_t<benchmark_utils::device_test_enabled_for_warp_size_v<WarpSize>>
{
    const unsigned int i = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;

    auto value = d_input[i];
    auto flag  = d_flags[i];

    using wreduce_t = hipcub::WarpReduce<T, WarpSize>;
    __shared__ typename wreduce_t::TempStorage storage;
#pragma nounroll
    for(unsigned int trial = 0; trial < Trials; trial++)
    {
        value = wreduce_t(storage).HeadSegmentedSum(value, flag);
    }

    d_output[i] = value;
}

template<class T, class Flag, unsigned int WarpSize, unsigned int Trials>
__global__ __launch_bounds__(64)
auto segmented_warp_reduce_kernel(const T* /*d_input*/, Flag* /*d_flags*/, T* /*d_output*/)
    -> std::enable_if_t<!benchmark_utils::device_test_enabled_for_warp_size_v<WarpSize>>
{}

template<bool         Segmented,
         unsigned int WarpSize,
         unsigned int BlockSize,
         unsigned int Trials,
         class T,
         class Flag>
inline auto execute_warp_reduce_kernel(
    T* input, T* output, Flag* /* flags */, size_t size, hipStream_t stream) ->
    typename std::enable_if<!Segmented>::type
{
    hipLaunchKernelGGL(HIP_KERNEL_NAME(warp_reduce_kernel<T, WarpSize, Trials>),
                       dim3(size / BlockSize),
                       dim3(BlockSize),
                       0,
                       stream,
                       input,
                       output);
    HIP_CHECK(hipPeekAtLastError());
}

template<bool         Segmented,
         unsigned int WarpSize,
         unsigned int BlockSize,
         unsigned int Trials,
         class T,
         class Flag>
inline auto
    execute_warp_reduce_kernel(T* input, T* output, Flag* flags, size_t size, hipStream_t stream) ->
    typename std::enable_if<Segmented>::type
{
    hipLaunchKernelGGL(HIP_KERNEL_NAME(segmented_warp_reduce_kernel<T, Flag, WarpSize, Trials>),
                       dim3(size / BlockSize),
                       dim3(BlockSize),
                       0,
                       stream,
                       input,
                       flags,
                       output);
    HIP_CHECK(hipPeekAtLastError());
}

template<bool Segmented,
         class T,
         unsigned int WarpSize,
         unsigned int BlockSize,
         unsigned int Trials = 100>
void run_benchmark(benchmark::State& state, hipStream_t stream, size_t N)
{
    using flag_type = unsigned char;

    const auto size = BlockSize * ((N + BlockSize - 1) / BlockSize);

    std::vector<T>         input = benchmark_utils::get_random_data<T>(size, T(0), T(10));
    std::vector<flag_type> flags = benchmark_utils::get_random_data<flag_type>(size, 0, 1);
    T*                     d_input;
    flag_type*             d_flags;
    T*                     d_output;
    HIP_CHECK(hipMalloc(&d_input, size * sizeof(T)));
    HIP_CHECK(hipMalloc(&d_flags, size * sizeof(flag_type)));
    HIP_CHECK(hipMalloc(&d_output, size * sizeof(T)));
    HIP_CHECK(hipMemcpy(d_input, input.data(), size * sizeof(T), hipMemcpyHostToDevice));
    HIP_CHECK(hipMemcpy(d_flags, flags.data(), size * sizeof(flag_type), hipMemcpyHostToDevice));
    HIP_CHECK(hipDeviceSynchronize());

    for(auto _ : state)
    {
        auto start = std::chrono::high_resolution_clock::now();
        execute_warp_reduce_kernel<Segmented, WarpSize, BlockSize, Trials>(d_input,
                                                                           d_output,
                                                                           d_flags,
                                                                           size,
                                                                           stream);
        HIP_CHECK(hipDeviceSynchronize());

        auto end = std::chrono::high_resolution_clock::now();
        auto elapsed_seconds
            = std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
        state.SetIterationTime(elapsed_seconds.count());
    }
    state.SetBytesProcessed(state.iterations() * Trials * size * sizeof(T));
    state.SetItemsProcessed(state.iterations() * Trials * size);

    HIP_CHECK(hipFree(d_input));
    HIP_CHECK(hipFree(d_output));
    HIP_CHECK(hipFree(d_flags));
}

#define CREATE_BENCHMARK(T, WS, BS)                                                        \
    benchmark::RegisterBenchmark(std::string("warp_reduce<data_type:" #T ",warp_size:" #WS \
                                             ",block_size:" #BS ">.sub_algorithm_name:"    \
                                             + name)                                       \
                                     .c_str(),                                             \
                                 &run_benchmark<Segmented, T, WS, BS>,                     \
                                 stream,                                                   \
                                 size)

// If warp size limit is 16
#define BENCHMARK_TYPE_WS16(type) CREATE_BENCHMARK(type, 15, 32), CREATE_BENCHMARK(type, 16, 32)

// If warp size limit is 32
#define BENCHMARK_TYPE_WS32(type)                                                              \
    BENCHMARK_TYPE_WS16(type), CREATE_BENCHMARK(type, 31, 32), CREATE_BENCHMARK(type, 32, 32), \
        CREATE_BENCHMARK(type, 32, 64)

// If warp size limit is 64
#define BENCHMARK_TYPE_WS64(type)                                                              \
    BENCHMARK_TYPE_WS32(type), CREATE_BENCHMARK(type, 37, 64), CREATE_BENCHMARK(type, 61, 64), \
        CREATE_BENCHMARK(type, 64, 64)

template<bool Segmented>
void add_benchmarks(const std::string&                            name,
                    std::vector<benchmark::internal::Benchmark*>& benchmarks,
                    hipStream_t                                   stream,
                    size_t                                        size)
{
    std::vector<benchmark::internal::Benchmark*> bs = {
#if HIPCUB_WARP_THREADS_MACRO == 16
        BENCHMARK_TYPE_WS16(int),
        BENCHMARK_TYPE_WS16(float),
        BENCHMARK_TYPE_WS16(double),
        BENCHMARK_TYPE_WS16(int8_t),
        BENCHMARK_TYPE_WS16(uint8_t)
#elif HIPCUB_WARP_THREADS_MACRO == 32
        BENCHMARK_TYPE_WS32(int),
        BENCHMARK_TYPE_WS32(float),
        BENCHMARK_TYPE_WS32(double),
        BENCHMARK_TYPE_WS32(int8_t),
        BENCHMARK_TYPE_WS32(uint8_t)
#else
        BENCHMARK_TYPE_WS64(int),
        BENCHMARK_TYPE_WS64(float),
        BENCHMARK_TYPE_WS64(double),
        BENCHMARK_TYPE_WS64(int8_t),
        BENCHMARK_TYPE_WS64(uint8_t)
#endif
    };
    benchmarks.insert(benchmarks.end(), bs.begin(), bs.end());
}

int main(int argc, char* argv[])
{
    cli::Parser parser(argc, argv);
    parser.set_optional<size_t>("size", "size", DEFAULT_N, "number of values");
    parser.set_optional<int>("trials", "trials", -1, "number of iterations");
    parser.run_and_exit_if_error();

    // Parse argv
    benchmark::Initialize(&argc, argv);
    const size_t size   = parser.get<size_t>("size");
    const int    trials = parser.get<int>("trials");

    std::cout << "benchmark_warp_reduce" << std::endl;

    // HIP
    hipStream_t     stream = 0; // default
    hipDeviceProp_t devProp;
    int             device_id = 0;
    HIP_CHECK(hipGetDevice(&device_id));
    HIP_CHECK(hipGetDeviceProperties(&devProp, device_id));
    std::cout << "[HIP] Device name: " << devProp.name << std::endl;

    // Add benchmarks
    std::vector<benchmark::internal::Benchmark*> benchmarks;
    add_benchmarks<false>("reduce", benchmarks, stream, size);
    add_benchmarks<true>("segmented_reduce", benchmarks, stream, size);

    // Use manual timing
    for(auto& b : benchmarks)
    {
        b->UseManualTime();
        b->Unit(benchmark::kMillisecond);
    }

    // Force number of iterations
    if(trials > 0)
    {
        for(auto& b : benchmarks)
        {
            b->Iterations(trials);
        }
    }

    // Run benchmarks
    benchmark::RunSpecifiedBenchmarks();
    return 0;
}