1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
* Modifications Copyright (c) 2021-2024, Advanced Micro Devices, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#ifndef EXAMPLES_EXAMPLE_UTILS_HPP
#define EXAMPLES_EXAMPLE_UTILS_HPP
#include "mersenne.h"
#include <vector>
#include <sstream>
#include <iostream>
#include <hipcub/util_type.hpp>
#include <hipcub/util_allocator.hpp>
#include <hipcub/iterator/discard_output_iterator.hpp>
#define AssertEquals(a, b) if ((a) != (b)) { std::cerr << "\n(" << __FILE__ << ": " << __LINE__ << ")\n"; exit(1);}
#define HIP_CHECK(condition) \
do \
{ \
hipError_t error = condition; \
if(error != hipSuccess) \
{ \
std::cout << "HIP error: " << error << " line: " << __LINE__ << std::endl; \
exit(error); \
} \
} \
while(0);
template <typename T>
T CoutCast(T val) { return val; }
int CoutCast(char val) { return val; }
int CoutCast(unsigned char val) { return val; }
int CoutCast(signed char val) { return val; }
/******************************************************************************
* Command-line parsing functionality
******************************************************************************/
/**
* Utility for parsing command line arguments
*/
struct CommandLineArgs
{
std::vector<std::string> keys;
std::vector<std::string> values;
std::vector<std::string> args;
hipDeviceProp_t deviceProp;
float device_giga_bandwidth;
std::size_t device_free_physmem;
std::size_t device_total_physmem;
/**
* Constructor
*/
CommandLineArgs(int argc, char **argv) :
keys(10),
values(10)
{
using namespace std;
// Initialize mersenne generator
unsigned int mersenne_init[4]= {0x123, 0x234, 0x345, 0x456};
mersenne::init_by_array(mersenne_init, 4);
for (int i = 1; i < argc; i++)
{
string arg = argv[i];
if ((arg[0] != '-') || (arg[1] != '-'))
{
args.push_back(arg);
continue;
}
string::size_type pos;
string key, val;
if ((pos = arg.find('=')) == string::npos) {
key = string(arg, 2, arg.length() - 2);
val = "";
} else {
key = string(arg, 2, pos - 2);
val = string(arg, pos + 1, arg.length() - 1);
}
keys.push_back(key);
values.push_back(val);
}
}
/**
* Checks whether a flag "--<flag>" is present in the commandline
*/
bool CheckCmdLineFlag(const char* arg_name)
{
using namespace std;
for (std::size_t i = 0; i < keys.size(); ++i)
{
if (keys[i] == string(arg_name))
return true;
}
return false;
}
/**
* Returns number of naked (non-flag and non-key-value) commandline parameters
*/
template <typename T>
int NumNakedArgs()
{
return args.size();
}
/**
* Returns the commandline parameter for a given index (not including flags)
*/
template <typename T>
void GetCmdLineArgument(std::size_t index, T &val)
{
using namespace std;
if (index < args.size()) {
std::istringstream str_stream(args[index]);
str_stream >> val;
}
}
/**
* Returns the value specified for a given commandline parameter --<flag>=<value>
*/
template <typename T>
void GetCmdLineArgument(const char *arg_name, T &val)
{
using namespace std;
for (std::size_t i = 0; i < keys.size(); ++i)
{
if (keys[i] == string(arg_name))
{
std::istringstream str_stream(values[i]);
str_stream >> val;
}
}
}
/**
* Returns the values specified for a given commandline parameter --<flag>=<value>,<value>*
*/
template <typename T>
void GetCmdLineArguments(const char *arg_name, std::vector<T> &vals)
{
using namespace std;
if (CheckCmdLineFlag(arg_name))
{
// Clear any default values
vals.clear();
// Recover from multi-value string
for (std::size_t i = 0; i < keys.size(); ++i)
{
if (keys[i] == string(arg_name))
{
string val_string(values[i]);
std::istringstream str_stream(val_string);
string::size_type old_pos = 0;
string::size_type new_pos = 0;
// Iterate comma-separated values
T val;
while ((new_pos = val_string.find(',', old_pos)) != string::npos)
{
if (new_pos != old_pos)
{
str_stream.width(new_pos - old_pos);
str_stream >> val;
vals.push_back(val);
}
// skip over comma
str_stream.ignore(1);
old_pos = new_pos + 1;
}
// Read last value
str_stream >> val;
vals.push_back(val);
}
}
}
}
/**
* The number of pairs parsed
*/
int ParsedArgc()
{
return (int) keys.size();
}
/**
* Initialize device
*/
hipError_t DeviceInit(int dev = -1)
{
hipError_t error = hipSuccess;
do
{
int deviceCount;
error = hipGetDeviceCount(&deviceCount);
if (error) break;
if (deviceCount == 0) {
fprintf(stderr, "No devices supporting CUDA.\n");
exit(1);
}
if (dev < 0)
{
GetCmdLineArgument("device", dev);
}
if ((dev > deviceCount - 1) || (dev < 0))
{
dev = 0;
}
error = hipSetDevice(dev);
if (error) break;
HIP_CHECK(hipMemGetInfo(&device_free_physmem, &device_total_physmem));
// int ptx_version = 0;
// error = hipcub::PtxVersion(ptx_version);
// if (error) break;
error = hipGetDeviceProperties(&deviceProp, dev);
if (error) break;
if (deviceProp.major < 1) {
fprintf(stderr, "Device does not support Hip.\n");
exit(1);
}
device_giga_bandwidth = float(deviceProp.memoryBusWidth) * deviceProp.memoryClockRate * 2 / 8 / 1000 / 1000;
if (!CheckCmdLineFlag("quiet"))
{
printf(
"Using device %d: %s ( SM%d, %d SMs, "
"%lld free / %lld total MB physmem, "
"%.3f GB/s @ %d kHz mem clock, ECC %s)\n",
dev,
deviceProp.name,
deviceProp.major * 100 + deviceProp.minor * 10,
deviceProp.multiProcessorCount,
(unsigned long long) device_free_physmem / 1024 / 1024,
(unsigned long long) device_total_physmem / 1024 / 1024,
device_giga_bandwidth,
deviceProp.memoryClockRate,
(deviceProp.ECCEnabled) ? "on" : "off");
fflush(stdout);
}
} while (0);
return error;
}
};
/******************************************************************************
* Helper routines for list comparison and display
******************************************************************************/
/**
* Compares the equivalence of two arrays
*/
template <typename S, typename T, typename OffsetT>
int CompareResults(T* computed, S* reference, OffsetT len, bool verbose = true)
{
for (OffsetT i = 0; i < len; i++)
{
if (computed[i] != reference[i])
{
if (verbose) std::cout << "INCORRECT: [" << i << "]: "
<< CoutCast(computed[i]) << " != "
<< CoutCast(reference[i]);
return 1;
}
}
return 0;
}
/**
* Compares the equivalence of two arrays
*/
template <typename OffsetT>
int CompareResults(float* computed, float* reference, OffsetT len, bool verbose = true)
{
for (OffsetT i = 0; i < len; i++)
{
if (computed[i] != reference[i])
{
float difference = std::abs(computed[i]-reference[i]);
float fraction = difference / std::abs(reference[i]);
if (fraction > 0.0001)
{
if (verbose) std::cout << "INCORRECT: [" << i << "]: "
<< "(computed) " << CoutCast(computed[i]) << " != "
<< CoutCast(reference[i]) << " (difference:" << difference << ", fraction: " << fraction << ")";
return 1;
}
}
}
return 0;
}
/**
* Compares the equivalence of two arrays
*/
// template <typename OffsetT>
// int CompareResults(hipcub::NullType* computed, hipcub::NullType* reference, OffsetT len, bool verbose = true)
// {
// return 0;
// }
/**
* Compares the equivalence of two arrays
*/
template <typename OffsetT>
int CompareResults(double* computed, double* reference, OffsetT len, bool verbose = true)
{
for (OffsetT i = 0; i < len; i++)
{
if (computed[i] != reference[i])
{
double difference = std::abs(computed[i]-reference[i]);
double fraction = difference / std::abs(reference[i]);
if (fraction > 0.0001)
{
if (verbose) std::cout << "INCORRECT: [" << i << "]: "
<< CoutCast(computed[i]) << " != "
<< CoutCast(reference[i]) << " (difference:" << difference << ", fraction: " << fraction << ")";
return 1;
}
}
}
return 0;
}
// /**
// * Verify the contents of a device array match those
// * of a host array
// */
// int CompareDeviceResults(
// hipcub::NullType */* h_reference */,
// hipcub::NullType */* d_data */,
// std::size_t /* num_items */,
// bool /* verbose */ = true,
// bool /* display_data */ = false)
// {
// return 0;
// }
/**
* Verify the contents of a device array match those
* of a host array
*/
// template <typename S, typename OffsetT>
// int CompareDeviceResults(
// S *h_reference,
// hipcub::DiscardOutputIterator<OffsetT> d_data,
// std::size_t num_items,
// bool verbose = true,
// bool display_data = false)
// {
// return 0;
// }
/**
* Verify the contents of a device array match those
* of a host array
*/
template <typename S, typename T>
int CompareDeviceResults(
S *h_reference,
T *d_data,
std::size_t num_items,
bool verbose = true,
bool display_data = false)
{
// Allocate array on host
T *h_data = (T*) malloc(num_items * sizeof(T));
// Copy data back
HIP_CHECK(hipMemcpy(h_data, d_data, sizeof(T) * num_items, hipMemcpyDeviceToHost));
// Display data
if (display_data)
{
printf("Reference:\n");
for (std::size_t i = 0; i < num_items; i++)
{
std::cout << CoutCast(h_reference[i]) << ", ";
}
printf("\n\nComputed:\n");
for (std::size_t i = 0; i < num_items; i++)
{
std::cout << CoutCast(h_data[i]) << ", ";
}
printf("\n\n");
}
// Check
int retval = CompareResults(h_data, h_reference, num_items, verbose);
// Cleanup
if (h_data) free(h_data);
return retval;
}
/**
* Verify the contents of a device array match those
* of a device array
*/
template <typename T>
int CompareDeviceDeviceResults(
T *d_reference,
T *d_data,
std::size_t num_items,
bool verbose = true,
bool display_data = false)
{
// Allocate array on host
T *h_reference = (T*) malloc(num_items * sizeof(T));
T *h_data = (T*) malloc(num_items * sizeof(T));
// Copy data back
HIP_CHECK(hipMemcpy(h_reference, d_reference, sizeof(T) * num_items, hipMemcpyDeviceToHost));
HIP_CHECK(hipMemcpy(h_data, d_data, sizeof(T) * num_items, hipMemcpyDeviceToHost));
// Display data
if (display_data) {
printf("Reference:\n");
for (std::size_t i = 0; i < num_items; i++)
{
std::cout << CoutCast(h_reference[i]) << ", ";
}
printf("\n\nComputed:\n");
for (std::size_t i = 0; i < num_items; i++)
{
std::cout << CoutCast(h_data[i]) << ", ";
}
printf("\n\n");
}
// Check
int retval = CompareResults(h_data, h_reference, num_items, verbose);
// Cleanup
if (h_reference) free(h_reference);
if (h_data) free(h_data);
return retval;
}
/**
* Print the contents of a host array
*/
template <typename InputIteratorT>
void DisplayResults(
InputIteratorT h_data,
std::size_t num_items)
{
// Display data
for (std::size_t i = 0; i < num_items; i++)
{
std::cout << CoutCast(h_data[i]) << ", ";
}
printf("\n");
}
int g_num_rand_samples = 0;
/**
* Generates random keys.
*
* We always take the second-order byte from rand() because the higher-order
* bits returned by rand() are commonly considered more uniformly distributed
* than the lower-order bits.
*
* We can decrease the entropy level of keys by adopting the technique
* of Thearling and Smith in which keys are computed from the bitwise AND of
* multiple random samples:
*
* entropy_reduction | Effectively-unique bits per key
* -----------------------------------------------------
* -1 | 0
* 0 | 32
* 1 | 25.95 (81%)
* 2 | 17.41 (54%)
* 3 | 10.78 (34%)
* 4 | 6.42 (20%)
* ... | ...
*
*/
template <typename K>
void RandomBits(
K &key,
int entropy_reduction = 0,
int begin_bit = 0,
int end_bit = sizeof(K) * 8)
{
const int NUM_BYTES = sizeof(K);
const int WORD_BYTES = sizeof(unsigned int);
const int NUM_WORDS = (NUM_BYTES + WORD_BYTES - 1) / WORD_BYTES;
unsigned int word_buff[NUM_WORDS];
if (entropy_reduction == -1)
{
memset((void *) &key, 0, sizeof(key));
return;
}
if (end_bit < 0)
end_bit = sizeof(K) * 8;
while (true)
{
// Generate random word_buff
for (int j = 0; j < NUM_WORDS; j++)
{
int current_bit = j * WORD_BYTES * 8;
unsigned int word = 0xffffffff;
word &= 0xffffffff << std::max(0, begin_bit - current_bit);
word &= 0xffffffff >> std::max(0, (current_bit + (WORD_BYTES * 8)) - end_bit);
for (int i = 0; i <= entropy_reduction; i++)
{
// Grab some of the higher bits from rand (better entropy, supposedly)
word &= mersenne::genrand_int32();
g_num_rand_samples++;
}
word_buff[j] = word;
}
memcpy(&key, word_buff, sizeof(K));
K copy = key;
if HIPCUB_IF_CONSTEXPR(std::is_floating_point<K>::value)
#ifndef _WIN32
if(!std::isnan(copy))
#else
// MSVC STL is missing the integral overload of std::isnan
// https://github.com/microsoft/STL/issues/3400
// They're right, the integral overloads were removed from the standard
// after national body comments. std::isnan is supposed to behave _identically_
// to the isnan CRT macro, where ISO C 7.12.3 states
// > In the synopses in this subclause, real-floating indicates that the
// argument shall be an expression of real floating type.
if(!std::isnan(static_cast<double>(copy)))
#endif
break; // avoids NaNs when generating random floating point numbers
}
}
/// Randomly select number between [0:max)
template <typename T>
T RandomValue(T max)
{
unsigned int bits;
unsigned int max_int = (unsigned int) -1;
do {
RandomBits(bits);
} while (bits == max_int);
return (T) ((double(bits) / double(max_int)) * double(max));
}
struct GpuTimer
{
hipEvent_t start;
hipEvent_t stop;
GpuTimer()
{
HIP_CHECK(hipEventCreate(&start));
HIP_CHECK(hipEventCreate(&stop));
}
~GpuTimer()
{
HIP_CHECK(hipEventDestroy(start));
HIP_CHECK(hipEventDestroy(stop));
}
void Start()
{
HIP_CHECK(hipEventRecord(start, 0));
}
void Stop()
{
HIP_CHECK(hipEventRecord(stop, 0));
}
float ElapsedMillis()
{
float elapsed;
HIP_CHECK(hipEventSynchronize(stop));
HIP_CHECK(hipEventElapsedTime(&elapsed, start, stop));
return elapsed;
}
};
#endif
|