File: rocfft_against_fftw.h

package info (click to toggle)
hipfft 6.1.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,568 kB
  • sloc: cpp: 15,967; python: 186; sh: 45; makefile: 40; xml: 15
file content (231 lines) | stat: -rw-r--r-- 9,315 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright (C) 2016 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#pragma once
#ifndef ROCFFT_AGAINST_FFTW
#define ROCFFT_AGAINST_FFTW

#include <gtest/gtest.h>
#include <math.h>
#include <stdexcept>
#include <vector>

#include "fftw_transform.h"

// Return the precision enum for rocFFT based upon the type.
template <typename Tfloat>
inline fft_precision precision_selector();
template <>
inline fft_precision precision_selector<float>()
{
    return fft_precision_single;
}
template <>
inline fft_precision precision_selector<double>()
{
    return fft_precision_double;
}

extern bool use_fftw_wisdom;

// construct and return an FFTW plan with the specified type,
// precision, and dimensions.  cpu_out is required if we're using
// wisdom, which runs actual FFTs to work out the best plan.
template <typename Tfloat>
static typename fftw_trait<Tfloat>::fftw_plan_type
    fftw_plan_with_precision(const std::vector<fftw_iodim64>& dims,
                             const std::vector<fftw_iodim64>& howmany_dims,
                             const fft_transform_type         transformType,
                             const size_t                     isize,
                             void*                            cpu_in,
                             void*                            cpu_out)
{
    using fftw_complex_type = typename fftw_trait<Tfloat>::fftw_complex_type;

    // NB: Using FFTW_MEASURE implies that the input buffer's data
    // may be destroyed during plan creation.  But if we're wanting
    // to run FFTW in the first place, we must have just created an
    // uninitialized input buffer anyway.

    switch(transformType)
    {
    case fft_transform_type_complex_forward:
        return fftw_plan_guru64_dft<Tfloat>(dims.size(),
                                            dims.data(),
                                            howmany_dims.size(),
                                            howmany_dims.data(),
                                            reinterpret_cast<fftw_complex_type*>(cpu_in),
                                            reinterpret_cast<fftw_complex_type*>(cpu_out),
                                            -1,
                                            use_fftw_wisdom ? FFTW_MEASURE : FFTW_ESTIMATE);
    case fft_transform_type_complex_inverse:
        return fftw_plan_guru64_dft<Tfloat>(dims.size(),
                                            dims.data(),
                                            howmany_dims.size(),
                                            howmany_dims.data(),
                                            reinterpret_cast<fftw_complex_type*>(cpu_in),
                                            reinterpret_cast<fftw_complex_type*>(cpu_out),
                                            1,
                                            use_fftw_wisdom ? FFTW_MEASURE : FFTW_ESTIMATE);
    case fft_transform_type_real_forward:
        return fftw_plan_guru64_r2c<Tfloat>(dims.size(),
                                            dims.data(),
                                            howmany_dims.size(),
                                            howmany_dims.data(),
                                            reinterpret_cast<Tfloat*>(cpu_in),
                                            reinterpret_cast<fftw_complex_type*>(cpu_out),
                                            use_fftw_wisdom ? FFTW_MEASURE : FFTW_ESTIMATE);
    case fft_transform_type_real_inverse:
        return fftw_plan_guru64_c2r<Tfloat>(dims.size(),
                                            dims.data(),
                                            howmany_dims.size(),
                                            howmany_dims.data(),
                                            reinterpret_cast<fftw_complex_type*>(cpu_in),
                                            reinterpret_cast<Tfloat*>(cpu_out),
                                            use_fftw_wisdom ? FFTW_MEASURE : FFTW_ESTIMATE);
    default:
        throw std::runtime_error("Invalid transform type");
    }
}

// construct an FFTW plan, given rocFFT parameters.  output is
// required if planning with wisdom.
template <typename Tfloat>
static typename fftw_trait<Tfloat>::fftw_plan_type
    fftw_plan_via_rocfft(const std::vector<size_t>& length,
                         const std::vector<size_t>& istride,
                         const std::vector<size_t>& ostride,
                         const size_t               nbatch,
                         const size_t               idist,
                         const size_t               odist,
                         const fft_transform_type   transformType,
                         std::vector<hostbuf>&      input,
                         std::vector<hostbuf>&      output)
{
    // Dimension configuration:
    std::vector<fftw_iodim64> dims(length.size());
    for(unsigned int idx = 0; idx < length.size(); ++idx)
    {
        dims[idx].n  = length[idx];
        dims[idx].is = istride[idx];
        dims[idx].os = ostride[idx];
    }

    // Batch configuration:
    std::vector<fftw_iodim64> howmany_dims(1);
    howmany_dims[0].n  = nbatch;
    howmany_dims[0].is = idist;
    howmany_dims[0].os = odist;

    return fftw_plan_with_precision<Tfloat>(dims,
                                            howmany_dims,
                                            transformType,
                                            idist * nbatch,
                                            input.front().data(),
                                            output.empty() ? nullptr : output.front().data());
}

template <typename Tfloat>
void fftw_run(fft_transform_type                          transformType,
              typename fftw_trait<Tfloat>::fftw_plan_type cpu_plan,
              std::vector<hostbuf>&                       cpu_in,
              std::vector<hostbuf>&                       cpu_out)
{
    switch(transformType)
    {
    case fft_transform_type_complex_forward:
    {
        fftw_plan_execute_c2c<Tfloat>(cpu_plan, cpu_in, cpu_out);
        break;
    }
    case fft_transform_type_complex_inverse:
    {
        fftw_plan_execute_c2c<Tfloat>(cpu_plan, cpu_in, cpu_out);
        break;
    }
    case fft_transform_type_real_forward:
    {
        fftw_plan_execute_r2c<Tfloat>(cpu_plan, cpu_in, cpu_out);
        break;
    }
    case fft_transform_type_real_inverse:
    {
        fftw_plan_execute_c2r<Tfloat>(cpu_plan, cpu_in, cpu_out);
        break;
    }
    }
}

// Given a transform type, return the contiguous input type.
inline fft_array_type contiguous_itype(const fft_transform_type transformType)
{
    switch(transformType)
    {
    case fft_transform_type_complex_forward:
    case fft_transform_type_complex_inverse:
        return fft_array_type_complex_interleaved;
    case fft_transform_type_real_forward:
        return fft_array_type_real;
    case fft_transform_type_real_inverse:
        return fft_array_type_hermitian_interleaved;
    default:
        throw std::runtime_error("Invalid transform type");
    }
    return fft_array_type_complex_interleaved;
}

// Given a transform type, return the contiguous output type.
inline fft_array_type contiguous_otype(const fft_transform_type transformType)
{
    switch(transformType)
    {
    case fft_transform_type_complex_forward:
    case fft_transform_type_complex_inverse:
        return fft_array_type_complex_interleaved;
    case fft_transform_type_real_forward:
        return fft_array_type_hermitian_interleaved;
    case fft_transform_type_real_inverse:
        return fft_array_type_real;
    default:
        throw std::runtime_error("Invalid transform type");
    }
    return fft_array_type_complex_interleaved;
}

// Given a precision, return the acceptable tolerance.
inline double type_epsilon(const fft_precision precision)
{
    switch(precision)
    {
    case fft_precision_half:
        return type_epsilon<_Float16>();
        break;
    case fft_precision_single:
        return type_epsilon<float>();
        break;
    case fft_precision_double:
        return type_epsilon<double>();
        break;
    default:
        throw std::runtime_error("Invalid precision");
    }
}

#endif