File: rocfft_params.h

package info (click to toggle)
hipfft 6.1.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,568 kB
  • sloc: cpp: 15,967; python: 186; sh: 45; makefile: 40; xml: 15
file content (585 lines) | stat: -rw-r--r-- 23,027 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
// Copyright (C) 2021 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifndef ROCFFT_PARAMS_H
#define ROCFFT_PARAMS_H

#include "../shared/fft_params.h"
#include "../shared/gpubuf.h"
#include "rocfft/rocfft.h"

// Return the string of the rocfft_status code
static std::string rocfft_status_to_string(const rocfft_status ret)
{
    switch(ret)
    {
    case rocfft_status_success:
        return "rocfft_status_success";
    case rocfft_status_failure:
        return "rocfft_status_failure";
    case rocfft_status_invalid_arg_value:
        return "rocfft_status_invalid_arg_value";
    case rocfft_status_invalid_dimensions:
        return "rocfft_status_invalid_dimensions";
    case rocfft_status_invalid_array_type:
        return "rocfft_status_invalid_array_type";
    case rocfft_status_invalid_strides:
        return "rocfft_status_invalid_strides";
    case rocfft_status_invalid_distance:
        return "rocfft_status_invalid_distance";
    case rocfft_status_invalid_offset:
        return "rocfft_status_invalid_offset";
    case rocfft_status_invalid_work_buffer:
        return "rocfft_status_invalid_work_buffer";
    default:
        throw std::runtime_error("unknown rocfft_status");
    }
}

inline fft_status fft_status_from_rocfftparams(const rocfft_status val)
{
    switch(val)
    {
    case rocfft_status_success:
        return fft_status_success;
    case rocfft_status_failure:
        return fft_status_failure;
    case rocfft_status_invalid_arg_value:
        return fft_status_invalid_arg_value;
    case rocfft_status_invalid_dimensions:
        return fft_status_invalid_dimensions;
    case rocfft_status_invalid_array_type:
        return fft_status_invalid_array_type;
    case rocfft_status_invalid_strides:
        return fft_status_invalid_strides;
    case rocfft_status_invalid_distance:
        return fft_status_invalid_distance;
    case rocfft_status_invalid_offset:
        return fft_status_invalid_offset;
    case rocfft_status_invalid_work_buffer:
        return fft_status_invalid_work_buffer;
    default:
        throw std::runtime_error("Invalid status");
    }
}

inline rocfft_precision rocfft_precision_from_fftparams(const fft_precision val)
{
    switch(val)
    {
    case fft_precision_single:
        return rocfft_precision_single;
    case fft_precision_double:
        return rocfft_precision_double;
    case fft_precision_half:
        return rocfft_precision_half;
    default:
        throw std::runtime_error("Invalid precision");
    }
}

inline rocfft_array_type rocfft_array_type_from_fftparams(const fft_array_type val)
{
    switch(val)
    {
    case fft_array_type_complex_interleaved:
        return rocfft_array_type_complex_interleaved;
    case fft_array_type_complex_planar:
        return rocfft_array_type_complex_planar;
    case fft_array_type_real:
        return rocfft_array_type_real;
    case fft_array_type_hermitian_interleaved:
        return rocfft_array_type_hermitian_interleaved;
    case fft_array_type_hermitian_planar:
        return rocfft_array_type_hermitian_planar;
    case fft_array_type_unset:
        return rocfft_array_type_unset;
    }
    return rocfft_array_type_unset;
}

inline rocfft_transform_type rocfft_transform_type_from_fftparams(const fft_transform_type val)
{
    switch(val)
    {
    case fft_transform_type_complex_forward:
        return rocfft_transform_type_complex_forward;
    case fft_transform_type_complex_inverse:
        return rocfft_transform_type_complex_inverse;
    case fft_transform_type_real_forward:
        return rocfft_transform_type_real_forward;
    case fft_transform_type_real_inverse:
        return rocfft_transform_type_real_inverse;
    default:
        throw std::runtime_error("Invalid transform type");
    }
}

inline rocfft_result_placement
    rocfft_result_placement_from_fftparams(const fft_result_placement val)
{
    switch(val)
    {
    case fft_placement_inplace:
        return rocfft_placement_inplace;
    case fft_placement_notinplace:
        return rocfft_placement_notinplace;
    default:
        throw std::runtime_error("Invalid result placement");
    }
}

class rocfft_params : public fft_params
{
public:
    rocfft_plan             plan = nullptr;
    rocfft_execution_info   info = nullptr;
    rocfft_plan_description desc = nullptr;
    gpubuf_t<void>          wbuffer;

    explicit rocfft_params(){};

    explicit rocfft_params(const fft_params& p)
        : fft_params(p){};

    rocfft_params(const rocfft_params&) = delete;
    rocfft_params& operator=(const rocfft_params&) = delete;

    ~rocfft_params()
    {
        free();
    };

    void free()
    {
        if(plan != nullptr)
        {
            rocfft_plan_destroy(plan);
            plan = nullptr;
        }
        if(info != nullptr)
        {
            rocfft_execution_info_destroy(info);
            info = nullptr;
        }
        if(desc != nullptr)
        {
            rocfft_plan_description_destroy(desc);
            desc = nullptr;
        }
        wbuffer.free();
    }

    void validate_fields() const override
    {
        // row-major lengths including batch (i.e. batch is at the front)
        std::vector<size_t> length_with_batch{nbatch};
        std::copy(length.begin(), length.end(), std::back_inserter(length_with_batch));

        auto validate_field = [&](const fft_field& f) {
            for(const auto& b : f.bricks)
            {
                // bricks must have same dim as FFT, including batch
                if(b.lower.size() != length.size() + 1 || b.upper.size() != length.size() + 1
                   || b.stride.size() != length.size() + 1)
                    throw std::runtime_error(
                        "brick dimension does not match FFT + batch dimension");

                // ensure lower < upper, and that both fit in the FFT + batch dims
                if(!std::lexicographical_compare(
                       b.lower.begin(), b.lower.end(), b.upper.begin(), b.upper.end()))
                    throw std::runtime_error("brick lower index is not less than upper index");

                if(!std::lexicographical_compare(b.lower.begin(),
                                                 b.lower.end(),
                                                 length_with_batch.begin(),
                                                 length_with_batch.end()))
                    throw std::runtime_error(
                        "brick lower index is not less than FFT + batch length");

                if(!std::lexicographical_compare(b.upper.begin(),
                                                 b.upper.end(),
                                                 length_with_batch.begin(),
                                                 length_with_batch.end())
                   && b.upper != length_with_batch)
                    throw std::runtime_error("brick upper index is not <= FFT + batch length");
            }
        };

        for(const auto& ifield : ifields)
            validate_field(ifield);
        for(const auto& ofield : ofields)
            validate_field(ofield);
    }

    rocfft_precision get_rocfft_precision()
    {
        return rocfft_precision_from_fftparams(precision);
    }

    size_t vram_footprint() override
    {
        size_t val = fft_params::vram_footprint();
        if(setup_structs() != fft_status_success)
        {
            throw std::runtime_error("Struct setup failed");
        }
        val += workbuffersize;

        return val;
    }

    // Convert the generic fft_field structure to a rocfft_field
    // structure that can be passed to rocFFT.  In particular, we need
    // to convert from row-major to column-major.
    static rocfft_field fft_field_to_rocfft_field(const fft_field& f)
    {
        rocfft_field rfield = nullptr;
        if(f.bricks.empty())
            return rfield;

        if(rocfft_field_create(&rfield) != rocfft_status_success)
            throw std::runtime_error("rocfft_field_create failed");
        for(const auto& b : f.bricks)
        {
            // rocFFT wants column-major bricks and fft_params stores
            // row-major
            std::vector<size_t> lower_cm;
            std::copy(b.lower.rbegin(), b.lower.rend(), std::back_inserter(lower_cm));
            std::vector<size_t> upper_cm;
            std::copy(b.upper.rbegin(), b.upper.rend(), std::back_inserter(upper_cm));
            std::vector<size_t> stride_cm;
            std::copy(b.stride.rbegin(), b.stride.rend(), std::back_inserter(stride_cm));

            rocfft_brick rbrick = nullptr;
            if(rocfft_brick_create(&rbrick,
                                   lower_cm.data(), // field_lower
                                   upper_cm.data(), // field_upper
                                   stride_cm.data(), // brick_stride
                                   lower_cm.size(), // dim
                                   b.device) // deviceID
               != rocfft_status_success)
                throw std::runtime_error("rocfft_brick_create failed");

            if(rocfft_field_add_brick(rfield, rbrick) != rocfft_status_success)
                throw std::runtime_error("rocfft_field_add_brick failed");

            rocfft_brick_destroy(rbrick);
        }
        return rfield;
    }

    fft_status setup_structs()
    {
        rocfft_status fft_status = rocfft_status_success;
        if(desc == nullptr)
        {
            rocfft_plan_description_create(&desc);
            if(fft_status != rocfft_status_success)
                return fft_status_from_rocfftparams(fft_status);

            fft_status
                = rocfft_plan_description_set_data_layout(desc,
                                                          rocfft_array_type_from_fftparams(itype),
                                                          rocfft_array_type_from_fftparams(otype),
                                                          ioffset.data(),
                                                          ooffset.data(),
                                                          istride_cm().size(),
                                                          istride_cm().data(),
                                                          idist,
                                                          ostride_cm().size(),
                                                          ostride_cm().data(),
                                                          odist);
            if(fft_status != rocfft_status_success)
            {
                throw std::runtime_error("rocfft_plan_description_set_data_layout failed");
            }

            if(scale_factor != 1.0)
            {
                fft_status = rocfft_plan_description_set_scale_factor(desc, scale_factor);
                if(fft_status != rocfft_status_success)
                {
                    throw std::runtime_error("rocfft_plan_description_set_scale_factor failed");
                }
            }

            for(const auto& ifield : ifields)
            {
                rocfft_field infield = fft_field_to_rocfft_field(ifield);
                if(rocfft_plan_description_add_infield(desc, infield) != rocfft_status_success)
                    throw std::runtime_error("rocfft_description_add_infield failed");
                rocfft_field_destroy(infield);
            }

            for(const auto& ofield : ofields)
            {
                rocfft_field outfield = fft_field_to_rocfft_field(ofield);
                if(rocfft_plan_description_add_outfield(desc, outfield) != rocfft_status_success)
                    throw std::runtime_error("rocfft_description_add_outfield failed");
                rocfft_field_destroy(outfield);
            }
        }

        if(plan == nullptr)
        {
            fft_status = rocfft_plan_create(&plan,
                                            rocfft_result_placement_from_fftparams(placement),
                                            rocfft_transform_type_from_fftparams(transform_type),
                                            get_rocfft_precision(),
                                            length_cm().size(),
                                            length_cm().data(),
                                            nbatch,
                                            desc);
            if(fft_status != rocfft_status_success)
            {
                throw std::runtime_error("rocfft_plan_create failed");
            }
        }

        if(info == nullptr)
        {
            fft_status = rocfft_execution_info_create(&info);
            if(fft_status != rocfft_status_success)
            {
                throw std::runtime_error("rocfft_execution_info_create failed");
            }
        }

        fft_status = rocfft_plan_get_work_buffer_size(plan, &workbuffersize);
        if(fft_status != rocfft_status_success)
        {
            throw std::runtime_error("rocfft_plan_get_work_buffer_size failed");
        }

        return fft_status_from_rocfftparams(fft_status);
    }

    fft_status create_plan() override
    {
        fft_status ret = setup_structs();
        if(ret != fft_status_success)
        {
            return ret;
        }
        if(workbuffersize > 0)
        {
            hipError_t hip_status = hipSuccess;
            hip_status            = wbuffer.alloc(workbuffersize);
            if(hip_status != hipSuccess)
            {
                std::ostringstream oss;
                oss << "work buffer allocation failed (" << workbuffersize << " requested)";
                size_t mem_free  = 0;
                size_t mem_total = 0;
                hip_status       = hipMemGetInfo(&mem_free, &mem_total);
                if(hip_status == hipSuccess)
                {
                    oss << "free vram: " << mem_free << " total vram: " << mem_total;
                }
                else
                {
                    oss << "hipMemGetInfo also failed";
                }
                throw work_buffer_alloc_failure(oss.str());
            }

            auto rocret
                = rocfft_execution_info_set_work_buffer(info, wbuffer.data(), workbuffersize);
            if(rocret != rocfft_status_success)
            {
                throw std::runtime_error("rocfft_execution_info_set_work_buffer failed");
            }
        }

        return ret;
    }

    fft_status set_callbacks(void* load_cb_host,
                             void* load_cb_data,
                             void* store_cb_host,
                             void* store_cb_data) override
    {
        if(run_callbacks)
        {
            auto roc_status
                = rocfft_execution_info_set_load_callback(info, &load_cb_host, &load_cb_data, 0);
            if(roc_status != rocfft_status_success)
                return fft_status_from_rocfftparams(roc_status);

            roc_status
                = rocfft_execution_info_set_store_callback(info, &store_cb_host, &store_cb_data, 0);
            if(roc_status != rocfft_status_success)
                return fft_status_from_rocfftparams(roc_status);
        }
        return fft_status_success;
    }

    fft_status execute(void** in, void** out) override
    {
        auto ret = rocfft_execute(plan, in, out, info);
        return fft_status_from_rocfftparams(ret);
    }

    // scatter data to multiple GPUs and adjust I/O buffers to match
    void multi_gpu_prepare(std::vector<gpubuf>& ibuffer,
                           std::vector<void*>&  pibuffer,
                           std::vector<void*>&  pobuffer) override
    {
        auto alloc_fields = [&](const fft_params::fft_field& field,
                                fft_array_type               array_type,
                                std::vector<void*>&          pbuffer,
                                bool                         copy_input) {
            if(field.bricks.empty())
                return;

            // we have a field defined, clear the list of buffers as
            // we'll be allocating new ones for each brick
            pbuffer.clear();

            for(const auto& b : field.bricks)
            {
                // get brick's length - note that this includes batch
                // dimension
                const auto brick_len    = b.length();
                const auto brick_stride = b.stride;

                const size_t brick_size_elems = product(brick_len.begin(), brick_len.end());
                const size_t elem_size_bytes  = var_size<size_t>(precision, array_type);
                const size_t brick_size_bytes = brick_size_elems * elem_size_bytes;

                // set device for the alloc, but we want to return to the
                // default device as the source of a following memcpy
                {
                    rocfft_scoped_device dev(b.device);
                    multi_gpu_data.emplace_back();
                    if(multi_gpu_data.back().alloc(brick_size_bytes) != hipSuccess)
                        throw std::runtime_error("device allocation failure");
                    pbuffer.push_back(multi_gpu_data.back().data());
                }

                if(copy_input)
                {
                    // For now, assume we're only splitting on highest FFT
                    // dimension, lower-dimensional FFT data is all
                    // contiguous, and batches are contiguous in each brick.
                    //
                    // That means we can express this as a 2D memcpy.
                    const size_t unbatched_elems_per_brick
                        = product(brick_len.begin() + 1, brick_len.end());
                    const size_t unbatched_elems_per_fft = product(length.begin(), length.end());

                    // get this brick's starting offset in the field
                    const size_t brick_offset
                        = b.lower_field_offset(istride, idist) * elem_size_bytes;

                    // copy from original input - note that we're
                    // assuming interleaved data so ibuffer has only one
                    // gpubuf
                    if(hipMemcpy2D(pbuffer.back(),
                                   unbatched_elems_per_brick * elem_size_bytes,
                                   ibuffer.front().data_offset(brick_offset),
                                   unbatched_elems_per_fft * elem_size_bytes,
                                   unbatched_elems_per_brick * elem_size_bytes,
                                   brick_len.front(),
                                   hipMemcpyHostToDevice)
                       != hipSuccess)
                        throw std::runtime_error("hipMemcpy failure");
                }
            }

            // if we copied the input to all the other devices, and
            // this is an out-of-place transform, we no longer
            // need the original input
            if(copy_input && placement == fft_placement_notinplace)
                ibuffer.clear();
        };

        // assume one input, one output field for simple cases
        if(!ifields.empty())
            alloc_fields(ifields.front(), itype, pibuffer, true);
        if(!ofields.empty())
        {
            if(!ifields.empty() && placement == fft_placement_inplace)
                pobuffer = pibuffer;
            else
                alloc_fields(ofields.front(), otype, pobuffer, false);
        }
    }

    // when preparing for multi-GPU transform, we need to allocate data
    // on each GPU.  This vector remembers all of those allocations.
    std::vector<gpubuf> multi_gpu_data;

    // gather data after multi-GPU FFT for verification
    void multi_gpu_finalize(std::vector<gpubuf>& obuffer, std::vector<void*>& pobuffer) override
    {
        if(ofields.empty())
            return;

        for(size_t i = 0; i < ofields.front().bricks.size(); ++i)
        {
            const auto& b         = ofields.front().bricks[i];
            const auto& brick_ptr = pobuffer[i];

            const auto brick_len = b.length();

            const size_t elem_size_bytes = var_size<size_t>(precision, otype);

            // get this brick's starting offset in the field
            const size_t brick_offset = b.lower_field_offset(ostride, odist) * elem_size_bytes;

            // switch device to where we're copying from
            rocfft_scoped_device dev(b.device);

            // For now, assume we're only splitting on highest FFT
            // dimension, lower-dimensional FFT data is all
            // contiguous, and batches are contiguous in each brick.
            //
            // That means we can express this as a 2D memcpy.
            const size_t unbatched_elems_per_brick
                = product(brick_len.begin() + 1, brick_len.end());
            const auto   output_length = olength();
            const size_t unbatched_elems_per_fft
                = product(output_length.begin(), output_length.end());

            // copy to original output buffer - note that
            // we're assuming interleaved data so obuffer
            // has only one gpubuf
            if(hipMemcpy2D(obuffer.front().data_offset(brick_offset),
                           unbatched_elems_per_fft * elem_size_bytes,
                           brick_ptr,
                           unbatched_elems_per_brick * elem_size_bytes,
                           unbatched_elems_per_brick * elem_size_bytes,
                           brick_len.front(),
                           hipMemcpyDeviceToDevice)
               != hipSuccess)
                throw std::runtime_error("hipMemcpy failure");

            // device-to-device transfers don't synchronize with the
            // host, add explicit sync
            (void)hipDeviceSynchronize();
        }
        pobuffer.clear();
        pobuffer.push_back(obuffer.front().data());
    }
};

#endif