1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
// Copyright (C) 2016 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <cmath>
#include <complex>
#include <cstddef>
#include <iostream>
#include <numeric>
#include <random>
#include "bench.h"
#include "../../shared/CLI11.hpp"
#include "../../shared/client_except.h"
#include "../../shared/gpubuf.h"
int main(int argc, char* argv[])
{
// This helps with mixing output of both wide and narrow characters to the screen
std::ios::sync_with_stdio(false);
// Control output verbosity:
int verbose{};
// hip Device number for running tests:
int deviceId{};
// Number of performance trial samples
int ntrial{};
// FFT parameters:
hipfft_params params;
// Token string to fully specify fft params.
std::string token;
// Declare the supported options.
CLI::App app{"hipfft-bench command line options"};
// Declare the supported options. Some option pointers are declared to track passed opts.
app.add_flag("-v, --version", "Print queryable version information from the rocfft library")
// ->each([](const std::string&) {
// char v[256];
// rocfft_get_version_string(v, 256);
// std::cout << "version " << v << std::endl;
// std::exit(EXIT_SUCCESS);
// })
;
CLI::Option* opt_token
= app.add_option("--token", token, "Token to read FFT params from")->default_val("");
// Group together options that conflict with --token
auto* non_token = app.add_option_group("Token Conflict", "Options excluded by --token");
non_token
->add_flag("--double", "Double precision transform (deprecated: use --precision double)")
->each([&](const std::string&) { params.precision = fft_precision_double; });
non_token->excludes(opt_token);
non_token
->add_option("-t, --transformType",
params.transform_type,
"Type of transform:\n0) complex forward\n1) complex inverse\n2) real "
"forward\n3) real inverse")
->default_val(fft_transform_type_complex_forward);
non_token
->add_option(
"--precision", params.precision, "Transform precision: single (default), double, half")
->excludes("--double");
CLI::Option* opt_not_in_place
= non_token->add_flag("-o, --notInPlace", "Not in-place FFT transform (default: in-place)")
->each([&](const std::string&) { params.placement = fft_placement_notinplace; });
non_token
->add_option("--itype",
params.itype,
"Array type of input data:\n0) interleaved\n1) planar\n2) real\n3) "
"hermitian interleaved\n4) hermitian planar")
->default_val(fft_array_type_unset);
non_token
->add_option("--otype",
params.otype,
"Array type of output data:\n0) interleaved\n1) planar\n2) real\n3) "
"hermitian interleaved\n4) hermitian planar")
->default_val(fft_array_type_unset);
CLI::Option* opt_length
= non_token->add_option("--length", params.length, "Lengths")->required()->expected(1, 3);
non_token
->add_option("-b, --batchSize",
params.nbatch,
"If this value is greater than one, arrays will be used")
->default_val(1);
CLI::Option* opt_istride = non_token->add_option("--istride", params.istride, "Input strides");
CLI::Option* opt_ostride = non_token->add_option("--ostride", params.ostride, "Output strides");
non_token->add_option("--idist", params.idist, "Logical distance between input batches")
->default_val(0)
->each([&](const std::string& val) { std::cout << "idist: " << val << "\n"; });
non_token->add_option("--odist", params.odist, "Logical distance between output batches")
->default_val(0)
->each([&](const std::string& val) { std::cout << "odist: " << val << "\n"; });
CLI::Option* opt_ioffset = non_token->add_option("--ioffset", params.ioffset, "Input offset");
CLI::Option* opt_ooffset = non_token->add_option("--ooffset", params.ooffset, "Output offset");
app.add_option("--device", deviceId, "Select a specific device id")->default_val(0);
app.add_option("--verbose", verbose, "Control output verbosity")->default_val(0);
app.add_option("-N, --ntrial", ntrial, "Trial size for the problem")
->default_val(1)
->each([&](const std::string& val) {
std::cout << "Running profile with " << val << " samples\n";
});
// Default value is set in fft_params.h based on if device-side PRNG was enabled.
app.add_option("-g, --inputGen",
params.igen,
"Input data generation:\n0) PRNG sequence (device)\n"
"1) PRNG sequence (host)\n"
"2) linearly-spaced sequence (device)\n"
"3) linearly-spaced sequence (host)");
app.add_option("--isize", params.isize, "Logical size of input buffer");
app.add_option("--osize", params.osize, "Logical size of output buffer");
app.add_option("--scalefactor", params.scale_factor, "Scale factor to apply to output");
// Parse args and catch any errors here
try
{
app.parse(argc, argv);
}
catch(const CLI::ParseError& e)
{
return app.exit(e);
}
if(!token.empty())
{
std::cout << "Reading fft params from token:\n" << token << std::endl;
try
{
params.from_token(token);
}
catch(...)
{
std::cout << "Unable to parse token." << std::endl;
return EXIT_FAILURE;
}
}
else
{
if(*opt_not_in_place)
{
std::cout << "out-of-place\n";
}
else
{
std::cout << "in-place\n";
}
if(*opt_length)
{
std::cout << "length:";
for(auto& i : params.length)
std::cout << " " << i;
std::cout << "\n";
}
if(*opt_istride)
{
std::cout << "istride:";
for(auto& i : params.istride)
std::cout << " " << i;
std::cout << "\n";
}
if(*opt_ostride)
{
std::cout << "ostride:";
for(auto& i : params.ostride)
std::cout << " " << i;
std::cout << "\n";
}
if(*opt_ioffset)
{
std::cout << "ioffset:";
for(auto& i : params.ioffset)
std::cout << " " << i;
std::cout << "\n";
}
if(*opt_ooffset)
{
std::cout << "ooffset:";
for(auto& i : params.ooffset)
std::cout << " " << i;
std::cout << "\n";
}
}
std::cout << std::flush;
// Fixme: set the device id properly after the IDs are synced
// bewteen hip runtime and rocm-smi.
// HIP_V_THROW(hipSetDevice(deviceId), "set device failed!");
params.validate();
if(!params.valid(verbose))
{
throw std::runtime_error("Invalid parameters, add --verbose=1 for detail");
}
std::cout << "Token: " << params.token() << std::endl;
if(verbose)
{
std::cout << params.str() << std::endl;
std::cout << "Token: " << params.token() << std::endl;
}
// Check free and total available memory:
size_t free = 0;
size_t total = 0;
if(hipMemGetInfo(&free, &total) != hipSuccess)
throw std::runtime_error("hipMemGetInfo failed");
const auto raw_vram_footprint
= params.fft_params_vram_footprint() + twiddle_table_vram_footprint(params);
if(!vram_fits_problem(raw_vram_footprint, free))
{
std::cout << "SKIPPED: Problem size (" << raw_vram_footprint
<< ") raw data too large for device.\n";
return EXIT_SUCCESS;
}
size_t vram_footprint = 0;
try
{
vram_footprint = params.vram_footprint();
}
catch(ROCFFT_SKIP& e)
{
std::cout << "SKIPPED: " << e.msg << "\n";
return EXIT_SUCCESS;
}
if(!vram_fits_problem(vram_footprint, free))
{
std::cout << "SKIPPED: Problem size (" << vram_footprint
<< ") raw data too large for device.\n";
return EXIT_SUCCESS;
}
// Create plans:
auto ret = params.create_plan();
if(ret != fft_status_success)
throw std::runtime_error("Plan creation failed");
hipError_t hip_rt;
// GPU input buffer:
auto ibuffer_sizes = params.ibuffer_sizes();
std::vector<gpubuf> ibuffer(ibuffer_sizes.size());
std::vector<void*> pibuffer(ibuffer_sizes.size());
for(unsigned int i = 0; i < ibuffer.size(); ++i)
{
hip_rt = ibuffer[i].alloc(ibuffer_sizes[i]);
if(hip_rt != hipSuccess)
throw std::runtime_error("Creating input Buffer failed");
pibuffer[i] = ibuffer[i].data();
}
// CPU-side input buffer
std::vector<hostbuf> ibuffer_cpu;
auto is_host_gen = (params.igen == fft_input_generator_host
|| params.igen == fft_input_random_generator_host);
#ifdef USE_HIPRAND
if(!is_host_gen)
{
// Input data:
params.compute_input(ibuffer);
if(verbose > 1)
{
// Copy input to CPU
ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
for(unsigned int idx = 0; idx < ibuffer.size(); ++idx)
{
HIP_V_THROW(hipMemcpy(ibuffer_cpu.at(idx).data(),
ibuffer[idx].data(),
ibuffer_sizes[idx],
hipMemcpyDeviceToHost),
"hipMemcpy failed");
}
std::cout << "GPU input:\n";
params.print_ibuffer(ibuffer_cpu);
}
}
#endif
if(is_host_gen)
{
// Input data:
ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
params.compute_input(ibuffer_cpu);
if(verbose > 1)
{
std::cout << "GPU input:\n";
params.print_ibuffer(ibuffer_cpu);
}
for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
{
HIP_V_THROW(hipMemcpy(pibuffer[idx],
ibuffer_cpu[idx].data(),
ibuffer_cpu[idx].size(),
hipMemcpyHostToDevice),
"hipMemcpy failed");
}
}
// GPU output buffer:
std::vector<gpubuf> obuffer_data;
std::vector<gpubuf>* obuffer = &obuffer_data;
if(params.placement == fft_placement_inplace)
{
obuffer = &ibuffer;
}
else
{
auto obuffer_sizes = params.obuffer_sizes();
obuffer_data.resize(obuffer_sizes.size());
for(unsigned int i = 0; i < obuffer_data.size(); ++i)
{
hip_rt = obuffer_data[i].alloc(obuffer_sizes[i]);
if(hip_rt != hipSuccess)
throw std::runtime_error("Creating output Buffer failed");
}
}
std::vector<void*> pobuffer(obuffer->size());
for(unsigned int i = 0; i < obuffer->size(); ++i)
{
pobuffer[i] = obuffer->at(i).data();
}
auto res = params.execute(pibuffer.data(), pobuffer.data());
if(res != fft_status_success)
throw std::runtime_error("Execution failed");
// Run the transform several times and record the execution time:
std::vector<double> gpu_time(ntrial);
hipEvent_t start, stop;
hip_rt = hipEventCreate(&start);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipEventCreate failed");
hip_rt = hipEventCreate(&stop);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipEventCreate failed");
for(size_t itrial = 0; itrial < gpu_time.size(); ++itrial)
{
#ifdef USE_HIPRAND
// Compute input on default device
if(!is_host_gen)
params.compute_input(ibuffer);
#endif
if(is_host_gen)
{
for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
{
HIP_V_THROW(hipMemcpy(pibuffer[idx],
ibuffer_cpu[idx].data(),
ibuffer_cpu[idx].size(),
hipMemcpyHostToDevice),
"hipMemcpy failed");
}
}
hip_rt = hipEventRecord(start);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipEventRecord failed");
res = params.execute(pibuffer.data(), pobuffer.data());
hip_rt = hipEventRecord(stop);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipEventRecord failed");
hip_rt = hipEventSynchronize(stop);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipEventSynchronize failed");
if(res != fft_status_success)
throw std::runtime_error("Execution failed");
float time;
hip_rt = hipEventElapsedTime(&time, start, stop);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipEventElapsedTime failed");
gpu_time[itrial] = time;
if(verbose > 2)
{
auto output = allocate_host_buffer(params.precision, params.otype, params.osize);
for(unsigned int idx = 0; idx < output.size(); ++idx)
{
hip_rt = hipMemcpy(
output[idx].data(), pobuffer[idx], output[idx].size(), hipMemcpyDeviceToHost);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
}
std::cout << "GPU output:\n";
params.print_obuffer(output);
}
}
std::cout << "\nExecution gpu time:";
for(const auto& i : gpu_time)
{
std::cout << " " << i;
}
std::cout << " ms" << std::endl;
}
|