1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// Copyright (C) 2021 - 2022 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <iostream>
#include <vector>
#include <hip/hip_runtime.h>
#include <hipfft/hipfft.h>
#include <hipfft/hipfftXt.h>
#include "../hipfft_params.h"
struct load_cbdata
{
hipfftDoubleComplex* filter;
double scale;
};
__device__ hipfftDoubleComplex load_callback(hipfftDoubleComplex* input,
size_t offset,
void* cbdata,
void* sharedMem)
{
auto data = static_cast<load_cbdata*>(cbdata);
// NB: for optimal performance, one may need a custom
// multiplication operator.
return hipCmul(hipCmul(input[offset], data->filter[offset]),
make_hipDoubleComplex(data->scale, 0));
}
__device__ auto load_callback_dev = load_callback;
int main()
{
std::cout << "hipfft 1D double-precision complex-to-complex transform with callback\n";
const int Nx = 8;
int direction = HIPFFT_FORWARD; // forward=-1, backward=1
std::vector<hipfftDoubleComplex> cdata(Nx), filter(Nx);
size_t complex_bytes = sizeof(decltype(cdata)::value_type) * cdata.size();
// Create HIP device object and copy data to device
// Use hipfftComplex for single-precision
hipError_t hip_rt;
hipfftDoubleComplex *x, *filter_dev;
hip_rt = hipMalloc(&x, complex_bytes);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMalloc failed");
hip_rt = hipMalloc(&filter_dev, complex_bytes);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMalloc failed");
// Initialize the data and filter
for(size_t i = 0; i < Nx; i++)
{
cdata[i].x = i;
cdata[i].y = i;
filter[i].x = rand() / static_cast<double>(RAND_MAX);
filter[i].y = 0;
}
hip_rt = hipMemcpy(x, cdata.data(), complex_bytes, hipMemcpyHostToDevice);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
hip_rt = hipMemcpy(filter_dev, filter.data(), complex_bytes, hipMemcpyHostToDevice);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
std::cout << "input:\n";
for(size_t i = 0; i < cdata.size(); i++)
{
std::cout << "(" << cdata[i].x << ", " << cdata[i].y << ") ";
}
std::cout << std::endl;
// Create the plan
hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
hipfftResult hipfft_rt = hipfftCreate(&plan);
if(hipfft_rt != HIPFFT_SUCCESS)
throw std::runtime_error("failed to create plan");
hipfft_rt = hipfftPlan1d(&plan, // plan handle
Nx, // transform length
HIPFFT_Z2Z, // transform type (HIPFFT_C2C for single-precision)
1); // number of transforms
if(hipfft_rt != HIPFFT_SUCCESS)
throw std::runtime_error("hipfftPlan1d failed");
// prepare callback
load_cbdata cbdata_host;
cbdata_host.filter = filter_dev;
cbdata_host.scale = 1.0 / static_cast<double>(Nx);
void* cbdata_dev;
hip_rt = hipMalloc(&cbdata_dev, sizeof(load_cbdata));
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMalloc failed");
hip_rt = hipMemcpy(cbdata_dev, &cbdata_host, sizeof(load_cbdata), hipMemcpyHostToDevice);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
void* cbptr_host = nullptr;
hip_rt = hipMemcpyFromSymbol(&cbptr_host, HIP_SYMBOL(load_callback_dev), sizeof(void*));
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMemcpyFromSymbol failed");
// set callback
hipfft_rt = hipfftXtSetCallback(plan, &cbptr_host, HIPFFT_CB_LD_COMPLEX_DOUBLE, &cbdata_dev);
if(hipfft_rt != HIPFFT_SUCCESS)
throw std::runtime_error("hipfftXtSetCallback failed");
// Execute plan:
// hipfftExecZ2Z: double precision, hipfftExecC2C: for single-precision
hipfft_rt = hipfftExecZ2Z(plan, x, x, direction);
if(hipfft_rt != HIPFFT_SUCCESS)
throw std::runtime_error("hipfftExecZ2Z failed");
std::cout << "output:\n";
hip_rt = hipMemcpy(cdata.data(), x, complex_bytes, hipMemcpyDeviceToHost);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
for(size_t i = 0; i < cdata.size(); i++)
{
std::cout << "(" << cdata[i].x << ", " << cdata[i].y << ") ";
}
std::cout << std::endl;
hipfftDestroy(plan);
hip_rt = hipFree(cbdata_dev);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipFree failed");
hip_rt = hipFree(filter_dev);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipFree failed");
hip_rt = hipFree(x);
if(hip_rt != hipSuccess)
throw std::runtime_error("hipFree failed");
return 0;
}
|