File: simple_test.cpp

package info (click to toggle)
hipfft 6.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,256 kB
  • sloc: cpp: 27,648; python: 170; makefile: 48; xml: 15; sh: 12
file content (646 lines) | stat: -rw-r--r-- 24,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// Copyright (c) 2018 - 2022 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#include "hipfft/hipfft.h"
#include <fftw3.h>
#include <gtest/gtest.h>
#include <hip/hip_vector_types.h>
#include <vector>

#include "../hipfft_params.h"

DISABLE_WARNING_PUSH
DISABLE_WARNING_DEPRECATED_DECLARATIONS
DISABLE_WARNING_RETURN_TYPE
#include <hip/hip_runtime_api.h>
DISABLE_WARNING_POP

// Function to return maximum error for float and double types.
template <typename Tfloat>
inline double type_epsilon();
template <>
inline double type_epsilon<float>()
{
    return 1e-6;
}
template <>
inline double type_epsilon<double>()
{
    return 1e-7;
}

TEST(hipfftTest, Create1dPlan)
{
    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    size_t length = 1024;
    ASSERT_EQ(hipfftPlan1d(&plan, length, HIPFFT_C2C, 1), HIPFFT_SUCCESS);

    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

TEST(hipfftTest, CreatePlanMany)
{
    int const  rank         = 3;
    int const  nX           = 64;
    int const  nY           = 128;
    int const  nZ           = 23;
    int        n[3]         = {nX, nY, nZ};
    int        inembed[3]   = {nX, nY, nZ};
    int*       inembed_null = nullptr;
    int const  istride      = 1;
    int const  idist        = nX * nY * nZ;
    int        onembed[3]   = {nX, nY, nZ};
    int*       onembed_null = nullptr;
    int const  ostride      = 1;
    int const  odist        = nX * nY * nZ;
    hipfftType type         = HIPFFT_C2C;
    int const  batch        = 1000;
    size_t     workSize;

    // Tests plan creation with null and not null
    // combinations of inembed and onembed.
    //
    // Valid combinations:
    //                      inembed == null && onembed == null
    //                      or
    //                      inembed != null && onembed != null
    //
    // otherwise HIPFFT_INVALID_VALUE should be
    // returned to maintain compatibility with cuFFT

    // inembed == null && onembed == null
    {
        hipfftHandle plan_valid_1 = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_valid_1), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany(plan_valid_1,
                                             rank,
                                             (int*)n,
                                             inembed_null,
                                             istride,
                                             idist,
                                             onembed_null,
                                             ostride,
                                             odist,
                                             type,
                                             batch,
                                             &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_SUCCESS)
            << "inembed == null && onembed == null failed: " << hipfftResult_string(ret_hipfft);
        ASSERT_EQ(hipfftSetAutoAllocation(plan_valid_1, 0), HIPFFT_SUCCESS);
        ASSERT_EQ(hipfftDestroy(plan_valid_1), HIPFFT_SUCCESS);
    }

    // inembed != null && onembed != null
    {
        hipfftHandle plan_valid_2 = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_valid_2), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany(plan_valid_2,
                                             rank,
                                             (int*)n,
                                             inembed,
                                             istride,
                                             idist,
                                             onembed,
                                             ostride,
                                             odist,
                                             type,
                                             batch,
                                             &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_SUCCESS)
            << "inembed != null && onembed != null failed: " << hipfftResult_string(ret_hipfft);
        ASSERT_EQ(hipfftSetAutoAllocation(plan_valid_2, 0), HIPFFT_SUCCESS);
        ASSERT_EQ(hipfftDestroy(plan_valid_2), HIPFFT_SUCCESS);
    }

    // inembed != null && onembed == null
    {
        hipfftHandle plan_invalid_1 = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_invalid_1), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany(plan_invalid_1,
                                             rank,
                                             (int*)n,
                                             inembed,
                                             istride,
                                             idist,
                                             onembed_null,
                                             ostride,
                                             odist,
                                             type,
                                             batch,
                                             &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_INVALID_VALUE)
            << "inembed != null && onembed == null failed: " << hipfftResult_string(ret_hipfft);
        ASSERT_EQ(hipfftDestroy(plan_invalid_1), HIPFFT_SUCCESS);
    }

    // inembed == null && onembed != null
    {
        hipfftHandle plan_invalid_2 = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_invalid_2), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany(plan_invalid_2,
                                             rank,
                                             (int*)n,
                                             inembed_null,
                                             istride,
                                             idist,
                                             onembed,
                                             ostride,
                                             odist,
                                             type,
                                             batch,
                                             &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_INVALID_VALUE)
            << "inembed == null && onembed != null failed: " << hipfftResult_string(ret_hipfft);
        ASSERT_EQ(hipfftDestroy(plan_invalid_2), HIPFFT_SUCCESS);
    }
}

TEST(hipfftTest, CreatePlanMany64)
{
    int const           rank               = 3;
    long long int const nX                 = 64;
    long long int const nY                 = 128;
    long long int const nZ                 = 23;
    long long int       n[3]               = {nX, nY, nZ};
    long long int       inembed[3]         = {nX, nY, nZ};
    long long int const istride            = 1;
    long long int const idist              = nX * nY * nZ;
    long long int       onembed[3]         = {nX, nY, nZ};
    long long int       onembed_invalid[3] = {nX, nY, -nZ};
    long long int const ostride            = 1;
    long long int const odist              = nX * nY * nZ;
    hipfftType          type               = HIPFFT_C2C;
    long long int const batch              = 1000;
    long long int const batch_invalid      = -2;
    size_t              workSize;

    // Tests the 64-bit version of plan creation
    // with valid/invalid data layouts.

    // First test with a valid data layout
    {
        hipfftHandle plan_valid = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_valid), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany64(plan_valid,
                                               rank,
                                               (long long int*)n,
                                               inembed,
                                               istride,
                                               idist,
                                               onembed,
                                               ostride,
                                               odist,
                                               type,
                                               batch,
                                               &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_SUCCESS);
        ASSERT_EQ(hipfftSetAutoAllocation(plan_valid, 0), HIPFFT_SUCCESS);
        ASSERT_EQ(hipfftDestroy(plan_valid), HIPFFT_SUCCESS);
    }

    // invalid data layout (n array has a negative entry). only test rocFFT
    // backend, since it's more strict
#ifdef __HIP_PLATFORM_AMD__
    long long int n_invalid[3] = {nX, -nY, nZ};
    {
        hipfftHandle plan_invalid_1 = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_invalid_1), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany64(plan_invalid_1,
                                               rank,
                                               (long long int*)n_invalid,
                                               inembed,
                                               istride,
                                               idist,
                                               onembed,
                                               ostride,
                                               odist,
                                               type,
                                               batch,
                                               &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_INVALID_VALUE);
        ASSERT_EQ(hipfftSetAutoAllocation(plan_invalid_1, 0), HIPFFT_SUCCESS);
        ASSERT_EQ(hipfftDestroy(plan_invalid_1), HIPFFT_SUCCESS);
    }
#endif

    // invalid data layout (onembed array has a negative entry)
    {
        hipfftHandle plan_invalid_2 = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_invalid_2), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany64(plan_invalid_2,
                                               rank,
                                               (long long int*)n,
                                               inembed,
                                               istride,
                                               idist,
                                               onembed_invalid,
                                               ostride,
                                               odist,
                                               type,
                                               batch,
                                               &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_INVALID_SIZE);
        ASSERT_EQ(hipfftSetAutoAllocation(plan_invalid_2, 0), HIPFFT_SUCCESS);
        ASSERT_EQ(hipfftDestroy(plan_invalid_2), HIPFFT_SUCCESS);
    }

    // invalid data layout (batch is negative)
    {
        hipfftHandle plan_invalid_3 = hipfft_params::INVALID_PLAN_HANDLE;
        ASSERT_EQ(hipfftCreate(&plan_invalid_3), HIPFFT_SUCCESS);
        auto ret_hipfft = hipfftMakePlanMany64(plan_invalid_3,
                                               rank,
                                               (long long int*)n,
                                               inembed,
                                               istride,
                                               idist,
                                               onembed,
                                               ostride,
                                               odist,
                                               type,
                                               batch_invalid,
                                               &workSize);
        ASSERT_EQ(ret_hipfft, HIPFFT_INVALID_SIZE);
        ASSERT_EQ(hipfftSetAutoAllocation(plan_invalid_3, 0), HIPFFT_SUCCESS);
        ASSERT_EQ(hipfftDestroy(plan_invalid_3), HIPFFT_SUCCESS);
    }
}

TEST(hipfftTest, hipfftGetSizeMany)
{
    int const  rank       = 3;
    int const  nX         = 33;
    int const  nY         = 128;
    int const  nZ         = 100;
    int        n[3]       = {nX, nY, nZ};
    int        inembed[3] = {nX, nY, nZ};
    int const  istride    = 1;
    int const  idist      = nX * nY * nZ;
    int        onembed[3] = {nX, nY, nZ};
    int const  ostride    = 1;
    int const  odist      = nX * nY * nZ;
    hipfftType type       = HIPFFT_C2C;
    int const  batch      = 1;
    size_t     workSize;

    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    auto ret_hipfft = hipfftGetSizeMany(plan,
                                        rank,
                                        (int*)n,
                                        inembed,
                                        istride,
                                        idist,
                                        onembed,
                                        ostride,
                                        odist,
                                        type,
                                        batch,
                                        &workSize);
    ASSERT_EQ(ret_hipfft, HIPFFT_SUCCESS);
    ASSERT_EQ(hipfftSetAutoAllocation(plan, 0), HIPFFT_SUCCESS);
    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

TEST(hipfftTest, hipfftGetSizeMany64)
{
    int const           rank       = 3;
    long long int const nX         = 133;
    long long int const nY         = 354;
    long long int const nZ         = 256;
    long long int       n[3]       = {nX, nY, nZ};
    long long int       inembed[3] = {nX, nY, nZ};
    long long int const istride    = 1;
    long long int const idist      = nX * nY * nZ;
    long long int       onembed[3] = {nX, nY, nZ};
    long long int const ostride    = 1;
    long long int const odist      = nX * nY * nZ;
    hipfftType          type       = HIPFFT_C2C;
    long long int const batch      = 2;
    size_t              workSize;

    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    auto ret_hipfft = hipfftGetSizeMany64(plan,
                                          rank,
                                          (long long int*)n,
                                          inembed,
                                          istride,
                                          idist,
                                          onembed,
                                          ostride,
                                          odist,
                                          type,
                                          batch,
                                          &workSize);
    ASSERT_EQ(ret_hipfft, HIPFFT_SUCCESS);
    ASSERT_EQ(hipfftSetAutoAllocation(plan, 0), HIPFFT_SUCCESS);
    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

TEST(hipfftTest, CheckBufferSizeC2C)
{
    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    size_t n        = 1024;
    size_t workSize = 0;

    ASSERT_EQ(hipfftMakePlan1d(plan, n, HIPFFT_C2C, 1, &workSize), HIPFFT_SUCCESS);

#ifdef __HIP_PLATFORM_AMD__
    // No extra work buffer for C2C
    EXPECT_EQ(workSize, 0);
#endif
    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

TEST(hipfftTest, CheckBufferSizeR2C)
{
    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    // real forward transform cannot modify input, so we need to pick
    // a sufficiently small N such that rocFFT can fuse
    // post-processing into one kernel and avoid a temp buffer
    size_t n        = 256;
    size_t workSize = 0;

    ASSERT_EQ(hipfftMakePlan1d(plan, n, HIPFFT_R2C, 1, &workSize), HIPFFT_SUCCESS);

#ifdef __HIP_PLATFORM_AMD__
    // NOTE: keep this condition for ease of changing n for ad-hoc tests
    //
    // cppcheck-suppress knownConditionTrueFalse
    if(n % 2 == 0)
    {
        EXPECT_EQ(workSize, 0);
    }
    else
    {
        EXPECT_EQ(workSize, 2 * n * sizeof(float));
    }
#endif
    EXPECT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

TEST(hipfftTest, CheckBufferSizeC2R)
{
    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    size_t n        = 2048;
    size_t workSize = 0;

    ASSERT_EQ(hipfftMakePlan1d(plan, n, HIPFFT_C2R, 1, &workSize), HIPFFT_SUCCESS);

#ifdef __HIP_PLATFORM_AMD__
    // NOTE: keep this condition for ease of changing n for ad-hoc tests
    //
    // cppcheck-suppress knownConditionTrueFalse
    if(n % 2 == 0)
    {
        EXPECT_EQ(workSize, 0);
    }
    else
    {
        EXPECT_EQ(workSize, 2 * n * sizeof(float));
    }
#endif
    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

TEST(hipfftTest, CheckBufferSizeD2Z)
{
    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    // real forward transform cannot modify input, so we need to pick
    // a sufficiently small N such that rocFFT can fuse
    // post-processing into one kernel and avoid a temp buffer
    size_t n        = 256;
    size_t batch    = 1000;
    size_t workSize = 0;

    ASSERT_EQ(hipfftMakePlan1d(plan, n, HIPFFT_D2Z, batch, &workSize), HIPFFT_SUCCESS);

#ifdef __HIP_PLATFORM_AMD__
    // NOTE: keep this condition for ease of changing n for ad-hoc tests
    //
    // cppcheck-suppress knownConditionTrueFalse
    if(n % 2 == 0)
    {
        EXPECT_EQ(workSize, 0);
    }
    else
    {
        EXPECT_EQ(workSize, 2 * n * sizeof(double));
    }
#endif

    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

TEST(hipfftTest, CheckBufferSizeZ2D)
{
    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    size_t n        = 2048;
    size_t batch    = 1000;
    size_t workSize = 0;

    ASSERT_EQ(hipfftMakePlan1d(plan, n, HIPFFT_Z2D, batch, &workSize), HIPFFT_SUCCESS);

#ifdef __HIP_PLATFORM_AMD__
    // NOTE: keep this condition for ease of changing n for ad-hoc tests
    //
    // cppcheck-suppress knownConditionTrueFalse
    if(n % 2 == 0)
    {
        EXPECT_EQ(workSize, 0);
    }
    else
    {
        EXPECT_EQ(workSize, 2 * n * sizeof(double));
    }
#endif

    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}

#ifdef __HIP_PLATFORM_AMD__
TEST(hipfftTest, CheckNullWorkBuffer)
{
    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    size_t n        = 2048;
    size_t batch    = 1000;
    size_t workSize = 0;

    ASSERT_EQ(hipfftMakePlan1d(plan, n, HIPFFT_Z2D, batch, &workSize), HIPFFT_SUCCESS);
    EXPECT_EQ(hipfftSetWorkArea(plan, nullptr), HIPFFT_SUCCESS);
    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
}
#endif

TEST(hipfftTest, RunR2C)
{
    const size_t N = 4096;
    float        in[N];
    for(size_t i = 0; i < N; i++)
        in[i] = i + (i % 3) - (i % 7);

    hipfftReal*    d_in;
    hipfftComplex* d_out;
    ASSERT_EQ(hipMalloc(&d_in, N * sizeof(hipfftReal)), hipSuccess);
    ASSERT_EQ(hipMalloc(&d_out, (N / 2 + 1) * sizeof(hipfftComplex)), hipSuccess);

    ASSERT_EQ(hipMemcpy(d_in, in, N * sizeof(hipfftReal), hipMemcpyHostToDevice), hipSuccess);

    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);
    size_t workSize;
    ASSERT_EQ(hipfftMakePlan1d(plan, N, HIPFFT_R2C, 1, &workSize), HIPFFT_SUCCESS);

    EXPECT_EQ(hipfftExecR2C(plan, d_in, d_out), HIPFFT_SUCCESS);

    std::vector<hipfftComplex> out(N / 2 + 1);
    ASSERT_EQ(hipMemcpy(&out[0], d_out, (N / 2 + 1) * sizeof(hipfftComplex), hipMemcpyDeviceToHost),
              hipSuccess);

    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
    ASSERT_EQ(hipFree(d_in), hipSuccess);
    ASSERT_EQ(hipFree(d_out), hipSuccess);
    ;
    // NOTE: keep this condition for ease of changing n for ad-hoc tests
    //
    // cppcheck-suppress knownConditionTrueFalse
    if(N % 2 != 0)
    {
        EXPECT_TRUE(workSize != 0);
    }

    double ref_in[N];
    for(size_t i = 0; i < N; i++)
        ref_in[i] = in[i];

    fftw_complex* ref_out;
    fftw_plan     ref_p;

    ref_out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * (N / 2 + 1));
    ref_p   = fftw_plan_dft_r2c_1d(N, ref_in, ref_out, FFTW_ESTIMATE);
    fftw_execute(ref_p);

    double maxv  = 0;
    double nrmse = 0; // normalized root mean square error
    for(size_t i = 0; i < (N / 2 + 1); i++)
    {
        // printf("element %d: FFTW result %f, %f; hipFFT result %f, %f \n", (int)i, ref_out[i][0], ref_out[i][1], out[i].x, out[i].y);
        double dr = ref_out[i][0] - out[i].x;
        double di = ref_out[i][1] - out[i].y;
        maxv      = fabs(ref_out[i][0]) > maxv ? fabs(ref_out[i][0]) : maxv;
        maxv      = fabs(ref_out[i][1]) > maxv ? fabs(ref_out[i][1]) : maxv;

        nrmse += ((dr * dr) + (di * di));
    }
    nrmse /= (double)((N / 2 + 1));
    nrmse = sqrt(nrmse);
    nrmse /= maxv;

    EXPECT_TRUE(nrmse < type_epsilon<double>());
    fftw_destroy_plan(ref_p);
    fftw_free(ref_out);
}

// ask for a transform whose parameters are only valid out-of-place.
// since hipFFT generates both in-place and out-place plans up front
// (because it's not told about the placement until exec time), this
// ensures that a failure to create an in-place plan doesn't prevent
// the out-place plan from working.
TEST(hipfftTest, OutplaceOnly)
{
    static const int N_in_const  = 4;
    static const int N_out_const = N_in_const / 2 + 1;
    // mutable sizes for passing to hipFFT
    int   N_in  = N_in_const;
    int   N_out = N_out_const;
    float in[N_in_const];
    for(int i = 0; i < N_in; i++)
        in[i] = i + (i % 3) - (i % 7);

    hipfftReal*    d_in;
    hipfftComplex* d_out;
    ASSERT_EQ(hipMalloc(&d_in, N_in * sizeof(hipfftReal)), hipSuccess);
    ASSERT_EQ(hipMalloc(&d_out, N_out * sizeof(hipfftComplex)), hipSuccess);

    ASSERT_EQ(hipMemcpy(d_in, in, N_in * sizeof(hipfftReal), hipMemcpyHostToDevice), hipSuccess);

    hipfftHandle plan = hipfft_params::INVALID_PLAN_HANDLE;
    ASSERT_EQ(hipfftCreate(&plan), HIPFFT_SUCCESS);

    ASSERT_EQ(hipfftPlanMany(&plan, 1, &N_in, &N_in, 1, N_in, &N_out, 1, N_out, HIPFFT_R2C, 1),
              HIPFFT_SUCCESS);

    ASSERT_EQ(plan == hipfft_params::INVALID_PLAN_HANDLE, false);

    ASSERT_EQ(hipfftExecR2C(plan, d_in, d_out), HIPFFT_SUCCESS) << "hipfftExecR2C failed";

    std::vector<hipfftComplex> out(N_out);
    ASSERT_EQ(hipMemcpy(out.data(), d_out, N_out * sizeof(hipfftComplex), hipMemcpyDeviceToHost),
              hipSuccess);

    // in-place transform isn't really *supposed* to work - this
    // might or might not fail but we can at least check that it
    // doesn't blow up.
    //hipfftExecR2C(plan, reinterpret_cast<hipfftReal*>(d_out), d_out);

    ASSERT_EQ(hipfftDestroy(plan), HIPFFT_SUCCESS);
    ASSERT_EQ(hipFree(d_in), hipSuccess);
    ASSERT_EQ(hipFree(d_out), hipSuccess);

    double ref_in[N_in_const];
    for(int i = 0; i < N_in_const; i++)
        ref_in[i] = in[i];

    fftw_complex* ref_out;
    fftw_plan     ref_p;

    ref_out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * N_out);
    ref_p   = fftw_plan_dft_r2c_1d(N_in, ref_in, ref_out, FFTW_ESTIMATE);
    fftw_execute(ref_p);

    double maxv  = 0;
    double nrmse = 0; // normalized root mean square error
    for(int i = 0; i < N_out; i++)
    {
        // printf("element %d: FFTW result %f, %f; hipFFT result %f, %f \n", (int)i, ref_out[i][0], ref_out[i][1], out[i].x, out[i].y);
        double dr = ref_out[i][0] - out[i].x;
        double di = ref_out[i][1] - out[i].y;
        maxv      = fabs(ref_out[i][0]) > maxv ? fabs(ref_out[i][0]) : maxv;
        maxv      = fabs(ref_out[i][1]) > maxv ? fabs(ref_out[i][1]) : maxv;

        nrmse += ((dr * dr) + (di * di));
    }
    nrmse /= (double)(N_out);
    nrmse = sqrt(nrmse);
    nrmse /= maxv;

    ASSERT_TRUE(nrmse < type_epsilon<double>());
    fftw_destroy_plan(ref_p);
    fftw_free(ref_out);
}