1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/* ************************************************************************
* Copyright (C) 2020-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*
* ************************************************************************ */
#include "../include/hipsolver_dispatcher.hpp"
#include "../rocblascommon/program_options.hpp"
using rocblas_int = int;
using rocblas_stride = ptrdiff_t;
using namespace roc;
// clang-format off
const char* help_str = R"HELP_STR(
hipSOLVER benchmark client help.
Usage: ./hipsolver-bench <options>
In addition to some common general options, the following list of options corresponds to all the parameters
that might be needed to test a given hipSOLVER function. The parameters are named as in the API user guide.
The arrays are initialized internally by the program with random values.
Note: When a required parameter/option is not provided, it will take the default value as listed below.
If no default value is defined, the program will try to calculate a suitable value depending on the context
of the problem and the tested function; if this is not possible, the program will abort with an error.
Functions that accept multiple size parameters can generally be provided a single size parameter (typically,
m) and a square-size matrix will be assumed.
Example: ./hipsolver-bench -f getrf -m 30 --lda 75
This will test getrf with a random 30x30 matrix.
Options:
)HELP_STR";
// clang-format on
int main(int argc, char* argv[])
try
{
Arguments argus;
// disable unit_check in client benchmark, it is only
// used in gtest unit test
argus.unit_check = 0;
// enable timing check,otherwise no performance data collected
argus.timing = 1;
std::string function;
char precision;
rocblas_int device_id;
// take arguments and set default values
// clang-format off
options_description desc("rocsolver client command line options");
desc.add_options()("help,h", "Produces this help message.")
// test options
("batch_count",
value<rocblas_int>(&argus.batch_count)->default_value(1),
"Number of matrices or problem instances in the batch.\n"
" Only applicable to batch routines.\n"
" ")
("device",
value<rocblas_int>(&device_id)->default_value(0),
"Set the default device to be used for subsequent program runs.\n"
" ")
("function,f",
value<std::string>(&function)->default_value("getrf"),
"The LAPACK function to test.\n"
" Options are: getrf, getrs, potrf, potrf_batched, etc.\n"
" ")
("iters,i",
value<rocblas_int>(&argus.iters)->default_value(10),
"Iterations to run inside the GPU timing loop.\n"
" Reported time will be the average.\n"
" ")
("mem_query",
value<rocblas_int>(&argus.mem_query)->default_value(0),
"Calculate the required amount of device workspace memory? 0 = No, 1 = Yes.\n"
" This forces the client to print only the amount of device memory required by\n"
" the function, in bytes.\n"
" ")
("perf",
value<rocblas_int>(&argus.perf)->default_value(0),
"Ignore CPU timing results? 0 = No, 1 = Yes.\n"
" This forces the client to print only the GPU time and the error if requested.\n"
" ")
("precision,r",
value<char>(&precision)->default_value('s'),
"Precision to be used in the tests.\n"
" Options are: s, d, c, z.\n"
" ")
// ("singular",
// value<rocblas_int>(&argus.singular)->default_value(0),
// "Test with degenerate matrices? 0 = No, 1 = Yes\n"
// " This will produce matrices that are singular, non positive-definite, etc.\n"
// " ")
("verify,v",
value<rocblas_int>(&argus.norm_check)->default_value(0),
"Validate GPU results with CPU? 0 = No, 1 = Yes.\n"
" This will additionally print the relative error of the computations.\n"
" ")
// size options
("k",
value<rocblas_int>(),
"Matrix/vector size parameter.\n"
" Represents a sub-dimension of a problem.\n"
" For example, the number of Householder reflections in a transformation.\n"
" ")
("m",
value<rocblas_int>(),
"Matrix/vector size parameter.\n"
" Typically, the number of rows of a matrix.\n"
" ")
("n",
value<rocblas_int>(),
"Matrix/vector size parameter.\n"
" Typically, the number of columns of a matrix,\n"
" or the order of a system or transformation.\n"
" ")
("nrhs",
value<rocblas_int>(),
"Matrix/vector size parameter.\n"
" Typically, the number of columns of a matrix on the right-hand side of a problem.\n"
" ")
// leading dimension options
("lda",
value<rocblas_int>(),
"Matrix size parameter.\n"
" Leading dimension of matrices A.\n"
" ")
("ldb",
value<rocblas_int>(),
"Matrix size parameter.\n"
" Leading dimension of matrices B.\n"
" ")
("ldc",
value<rocblas_int>(),
"Matrix size parameter.\n"
" Leading dimension of matrices C.\n"
" ")
// ("ldt",
// value<rocblas_int>(),
// "Matrix size parameter.\n"
// " Leading dimension of matrices T.\n"
// " ")
("ldu",
value<rocblas_int>(),
"Matrix size parameter.\n"
" Leading dimension of matrices U.\n"
" ")
("ldv",
value<rocblas_int>(),
"Matrix size parameter.\n"
" Leading dimension of matrices V.\n"
" ")
// ("ldw",
// value<rocblas_int>(),
// "Matrix size parameter.\n"
// " Leading dimension of matrices W.\n"
// " ")
("ldx",
value<rocblas_int>(),
"Matrix size parameter.\n"
" Leading dimension of matrices X.\n"
" ")
// ("ldy",
// value<rocblas_int>(),
// "Matrix size parameter.\n"
// " Leading dimension of matrices Y.\n"
// " ")
// stride options
("strideA",
value<rocblas_stride>(),
"Matrix/vector stride parameter.\n"
" Stride for matrices/vectors A.\n"
" ")
// ("strideB",
// value<rocblas_stride>(),
// "Matrix/vector stride parameter.\n"
// " Stride for matrices/vectors B.\n"
// " ")
// ("strideD",
// value<rocblas_stride>(),
// "Matrix/vector stride parameter.\n"
// " Stride for matrices/vectors D.\n"
// " ")
// ("strideE",
// value<rocblas_stride>(),
// "Matrix/vector stride parameter.\n"
// " Stride for matrices/vectors E.\n"
// " ")
// ("strideQ",
// value<rocblas_stride>(),
// "Matrix/vector stride parameter.\n"
// " Stride for vectors tauq.\n"
// " ")
// ("strideP",
// value<rocblas_stride>(),
// "Matrix/vector stride parameter.\n"
// " Stride for vectors tau, taup, and ipiv.\n"
// " ")
("strideS",
value<rocblas_stride>(),
"Matrix/vector stride parameter.\n"
" Stride for matrices/vectors S.\n"
" ")
("strideU",
value<rocblas_stride>(),
"Matrix/vector stride parameter.\n"
" Stride for matrices/vectors U.\n"
" ")
("strideV",
value<rocblas_stride>(),
"Matrix/vector stride parameter.\n"
" Stride for matrices/vectors V.\n"
" ")
// bdsqr options
// ("nc",
// value<rocblas_int>()->default_value(0),
// "The number of columns of matrix C.\n"
// " Only applicable to bdsqr.\n"
// " ")
// ("nu",
// value<rocblas_int>(),
// "The number of columns of matrix U.\n"
// " Only applicable to bdsqr.\n"
// " ")
// ("nv",
// value<rocblas_int>()->default_value(0),
// "The number of columns of matrix V.\n"
// " Only applicable to bdsqr.\n"
// " ")
// laswp options
// ("k1",
// value<rocblas_int>(),
// "First index for row interchange.\n"
// " Only applicable to laswp.\n"
// " ")
// ("k2",
// value<rocblas_int>(),
// "Last index for row interchange.\n"
// " Only applicable to laswp.\n"
// " ")
// gesvd options
("jobu",
value<char>()->default_value('N'),
"N = none, A = the entire orthogonal matrix is computed,\n"
" S = the singular vectors are computed,\n"
" O = the singular vectors overwrite the original matrix.\n"
" Indicates how the left singular vectors are to be calculated and stored.\n"
" ")
("jobv",
value<char>()->default_value('N'),
"N = none, A = the entire orthogonal matrix is computed,\n"
" S = the singular vectors are computed,\n"
" O = the singular vectors overwrite the original matrix.\n"
" Indicates how the right singular vectors are to be calculated and stored.\n"
" ")
// partial eigenvalue/singular value decomposition options
("il",
value<rocblas_int>(),
"Lower index in ordered subset of eigenvalues.\n"
" Used in partial eigenvalue decomposition functions.\n"
" ")
("iu",
value<rocblas_int>(),
"Upper index in ordered subset of eigenvalues.\n"
" Used in partial eigenvalue decomposition functions.\n"
" ")
("range",
value<char>()->default_value('A'),
"A = all eigenvalues, V = in (vl, vu], I = from the il-th to the iu-th.\n"
" For partial eigenvalue decompositions, it indicates the type of interval in which\n"
" the eigenvalues will be found.\n"
" ")
("rank",
value<rocblas_int>(),
"The number of singular values to be computed.\n"
" Used in partial SVD functions.\n"
" ")
("vl",
value<double>(),
"Lower bound of half-open interval (vl, vu].\n"
" Used in partial eigenvalue decomposition functions.\n"
" Note: the used random input matrices have all eigenvalues in [-20, 20].\n"
" ")
("vu",
value<double>(),
"Upper bound of half-open interval (vl, vu].\n"
" Used in partial eigenvalue decomposition functions.\n"
" Note: the used random input matrices have all eigenvalues in [-20, 20].\n"
" ")
// iterative Jacobi options
("econ",
value<rocblas_int>()->default_value(0),
"Enable economy size for singular vector matrices? 0 = No, 1 = Yes.\n"
" Only applicable to gesvdj.\n"
" ")
("max_sweeps",
value<rocblas_int>()->default_value(100),
"Maximum number of sweeps/iterations.\n"
" Used in iterative Jacobi functions.\n"
" ")
("tolerance",
value<double>(),
"Absolute tolerance at which convergence is accepted.\n"
" Used in iterative Jacobi functions.\n"
" ")
("sort_eig",
value<rocblas_int>()->default_value(1),
"0 = no sorting, 1 = ascending order.\n"
" Indicates whether the computed eigenvalues are sorted in ascending order.\n"
" Used in iterative Jacobi functions.\n"
" ")
// sparse routine options
("base1",
value<rocblas_int>(),
"0 = use base zero indices, 1 = use base one indices.\n"
" ")
("nnzA",
value<rocblas_int>(),
"Matrix size parameter.\n"
" Maximum number of non-zero entries of matrices A.\n"
" ")
("reorder",
value<rocblas_int>(),
"0 = no reordering, 1 = RCM reordering,\n"
" 2 = AMD reordering, 3 = METIS reordering.\n"
" ")
// other options
// ("direct",
// value<char>()->default_value('F'),
// "F = forward, B = backward.\n"
// " The order in which a series of transformations are applied.\n"
// " ")
// ("fast_alg",
// value<char>()->default_value('O'),
// "O = out-of-place, I = in-place.\n"
// " Enables out-of-place computations.\n"
// " ")
// ("incx",
// value<rocblas_int>()->default_value(1),
// "Increment between values in vector x.\n"
// " ")
("itype",
value<char>()->default_value('1'),
"1 = Ax, 2 = ABx, 3 = BAx.\n"
" Problem type for generalized eigenproblems.\n"
" ")
("jobz",
value<char>()->default_value('N'),
"N = none, V = compute eigenvectors/singular vectors of the matrix,\n"
" Indicates how the eigenvectors/singular vectors are to be calculated and stored.\n"
" ")
("side",
value<char>(),
"L = left, R = right.\n"
" The side from which a matrix should be multiplied.\n"
" ")
// ("storev",
// value<char>(),
// "C = column-wise, R = row-wise.\n"
// " Indicates whether data is stored column-wise or row-wise.\n"
// " ")
("trans",
value<char>()->default_value('N'),
"N = no transpose, T = transpose, C = conjugate transpose.\n"
" Indicates if a matrix should be transposed.\n"
" ")
("uplo",
value<char>()->default_value('U'),
"U = upper, L = lower.\n"
" Indicates where the data for a triangular or symmetric/hermitian matrix is stored.\n"
" ");
// clang-format on
variables_map vm;
store(parse_command_line(argc, argv, desc), vm);
notify(vm);
// print help message
if(vm.count("help"))
{
std::cout << help_str << desc << std::endl;
return 0;
}
argus.populate(vm);
// set device ID
if(!argus.perf)
{
rocblas_int device_count = query_device_property();
if(device_count <= device_id)
throw std::invalid_argument("Invalid Device ID");
}
set_device(device_id);
// catch invalid arguments
argus.validate_precision("precision");
argus.validate_operation("trans");
argus.validate_side("side");
argus.validate_fill("uplo");
// argus.validate_direct("direct");
// argus.validate_storev("storev");
argus.validate_svect("jobu");
argus.validate_svect("jobv");
// argus.validate_workmode("fast_alg");
argus.validate_itype("itype");
argus.validate_evect("jobz");
argus.validate_erange("range");
// select and dispatch function test/benchmark
hipsolver_dispatcher::invoke(function, precision, argus);
return 0;
}
catch(const std::invalid_argument& exp)
{
std::cerr << exp.what() << std::endl;
return -1;
}
|