File: testing_potrf.hpp

package info (click to toggle)
hipsolver 6.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,096 kB
  • sloc: cpp: 72,703; f90: 8,280; sh: 573; python: 531; ansic: 84; makefile: 51; xml: 10
file content (534 lines) | stat: -rw-r--r-- 20,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* ************************************************************************
 * Copyright (C) 2020-2024 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
 * ies of the Software, and to permit persons to whom the Software is furnished
 * to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
 * PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
 * CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 *
 * ************************************************************************ */

#pragma once

#include "clientcommon.hpp"

template <testAPI_t API, typename T, typename U, typename V>
void potrf_checkBadArgs(const hipsolverHandle_t   handle,
                        const hipsolverFillMode_t uplo,
                        const int                 n,
                        T                         dA,
                        const int                 lda,
                        const int                 stA,
                        U                         dWork,
                        const int                 lwork,
                        V                         dinfo,
                        const int                 bc)
{
    // handle
    EXPECT_ROCBLAS_STATUS(
        hipsolver_potrf(API, nullptr, uplo, n, dA, lda, stA, dWork, lwork, dinfo, bc),
        HIPSOLVER_STATUS_NOT_INITIALIZED);

    // values
    EXPECT_ROCBLAS_STATUS(
        hipsolver_potrf(
            API, handle, hipsolverFillMode_t(-1), n, dA, lda, stA, dWork, lwork, dinfo, bc),
        HIPSOLVER_STATUS_INVALID_ENUM);

#if defined(__HIP_PLATFORM_HCC__) || defined(__HIP_PLATFORM_AMD__)
    // pointers
    EXPECT_ROCBLAS_STATUS(
        hipsolver_potrf(API, handle, uplo, n, (T) nullptr, lda, stA, dWork, lwork, dinfo, bc),
        HIPSOLVER_STATUS_INVALID_VALUE);
    EXPECT_ROCBLAS_STATUS(
        hipsolver_potrf(API, handle, uplo, n, dA, lda, stA, dWork, lwork, (V) nullptr, bc),
        HIPSOLVER_STATUS_INVALID_VALUE);
#endif
}

template <testAPI_t API, bool BATCHED, bool STRIDED, typename T>
void testing_potrf_bad_arg()
{
    // safe arguments
    hipsolver_local_handle handle;
    hipsolverFillMode_t    uplo = HIPSOLVER_FILL_MODE_UPPER;
    int                    n    = 1;
    int                    lda  = 1;
    int                    stA  = 1;
    int                    bc   = 1;

    if(BATCHED)
    {
        // memory allocations
        device_batch_vector<T>           dA(1, 1, 1);
        device_strided_batch_vector<int> dinfo(1, 1, 1, 1);
        CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dinfo.memcheck());

        int size_W;
        hipsolver_potrf_bufferSize(API, handle, uplo, n, dA.data(), lda, &size_W, bc);
        device_strided_batch_vector<T> dWork(size_W, 1, size_W, 1);
        if(size_W)
            CHECK_HIP_ERROR(dWork.memcheck());

        // check bad arguments
        potrf_checkBadArgs<API>(
            handle, uplo, n, dA.data(), lda, stA, dWork.data(), size_W, dinfo.data(), bc);
    }
    else
    {
        // memory allocations
        device_strided_batch_vector<T>   dA(1, 1, 1, 1);
        device_strided_batch_vector<int> dinfo(1, 1, 1, 1);
        CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dinfo.memcheck());

        int size_W;
        hipsolver_potrf_bufferSize(API, handle, uplo, n, dA.data(), lda, &size_W, bc);
        device_strided_batch_vector<T> dWork(size_W, 1, size_W, 1);
        if(size_W)
            CHECK_HIP_ERROR(dWork.memcheck());

        // check bad arguments
        potrf_checkBadArgs<API>(
            handle, uplo, n, dA.data(), lda, stA, dWork.data(), size_W, dinfo.data(), bc);
    }
}

template <bool CPU, bool GPU, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potrf_initData(const hipsolverHandle_t   handle,
                    const hipsolverFillMode_t uplo,
                    const int                 n,
                    Td&                       dA,
                    const int                 lda,
                    const int                 stA,
                    Ud&                       dInfo,
                    const int                 bc,
                    Th&                       hA,
                    Uh&                       hInfo)
{
    if(CPU)
    {
        rocblas_init<T>(hA, true);

        for(rocblas_int b = 0; b < bc; ++b)
        {
            // scale to ensure positive definiteness
            for(rocblas_int i = 0; i < n; i++)
                hA[b][i + i * lda] = hA[b][i + i * lda] * conj(hA[b][i + i * lda]) * 400;
        }
    }

    if(GPU)
    {
        // now copy data to the GPU
        CHECK_HIP_ERROR(dA.transfer_from(hA));
    }
}

template <testAPI_t API,
          typename T,
          typename Td,
          typename Ud,
          typename Vd,
          typename Th,
          typename Uh>
void potrf_getError(const hipsolverHandle_t   handle,
                    const hipsolverFillMode_t uplo,
                    const int                 n,
                    Td&                       dA,
                    const int                 lda,
                    const int                 stA,
                    Vd&                       dWork,
                    const int                 lwork,
                    Ud&                       dInfo,
                    const int                 bc,
                    Th&                       hA,
                    Th&                       hARes,
                    Uh&                       hInfo,
                    Uh&                       hInfoRes,
                    double*                   max_err)
{
    // input data initialization
    potrf_initData<true, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);

    // execute computations
    // GPU lapack
    CHECK_ROCBLAS_ERROR(hipsolver_potrf(
        API, handle, uplo, n, dA.data(), lda, stA, dWork.data(), lwork, dInfo.data(), bc));
    CHECK_HIP_ERROR(hARes.transfer_from(dA));
    CHECK_HIP_ERROR(hInfoRes.transfer_from(dInfo));

    // CPU lapack
    for(int b = 0; b < bc; ++b)
        cpu_potrf(uplo, n, hA[b], lda, hInfo[b]);

    // error is ||hA - hARes|| / ||hA|| (ideally ||LL' - Lres Lres'|| / ||LL'||)
    // (THIS DOES NOT ACCOUNT FOR NUMERICAL REPRODUCIBILITY ISSUES.
    // IT MIGHT BE REVISITED IN THE FUTURE)
    // using frobenius norm
    double err;
    int    nn;
    *max_err = 0;
    for(int b = 0; b < bc; ++b)
    {
        nn = hInfoRes[b][0] == 0 ? n : hInfoRes[b][0];
        // (TODO: For now, the algorithm is modifying the whole input matrix even when
        //  it is not positive definite. So we only check the principal nn-by-nn submatrix.
        //  Once this is corrected, nn could be always equal to n.)
        if(uplo == HIPSOLVER_FILL_MODE_UPPER)
            err = norm_error_upperTr('F', nn, nn, lda, hA[b], hARes[b]);
        else
            err = norm_error_lowerTr('F', nn, nn, lda, hA[b], hARes[b]);
        *max_err = err > *max_err ? err : *max_err;
    }

    // also check info for non positive definite cases
    err = 0;
    for(int b = 0; b < bc; ++b)
    {
        EXPECT_EQ(hInfo[b][0], hInfoRes[b][0]) << "where b = " << b;
        if(hInfo[b][0] != hInfoRes[b][0])
            err++;
    }
    *max_err += err;
}

template <testAPI_t API,
          typename T,
          typename Td,
          typename Ud,
          typename Vd,
          typename Th,
          typename Uh>
void potrf_getPerfData(const hipsolverHandle_t   handle,
                       const hipsolverFillMode_t uplo,
                       const int                 n,
                       Td&                       dA,
                       const int                 lda,
                       const int                 stA,
                       Vd&                       dWork,
                       const int                 lwork,
                       Ud&                       dInfo,
                       const int                 bc,
                       Th&                       hA,
                       Uh&                       hInfo,
                       double*                   gpu_time_used,
                       double*                   cpu_time_used,
                       const int                 hot_calls,
                       const bool                perf)
{
    if(!perf)
    {
        potrf_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);

        // cpu-lapack performance (only if not in perf mode)
        *cpu_time_used = get_time_us_no_sync();
        for(int b = 0; b < bc; ++b)
            cpu_potrf(uplo, n, hA[b], lda, hInfo[b]);
        *cpu_time_used = get_time_us_no_sync() - *cpu_time_used;
    }

    potrf_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);

    // cold calls
    for(int iter = 0; iter < 2; iter++)
    {
        potrf_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);

        CHECK_ROCBLAS_ERROR(hipsolver_potrf(
            API, handle, uplo, n, dA.data(), lda, stA, dWork.data(), lwork, dInfo.data(), bc));
    }

    // gpu-lapack performance
    hipStream_t stream;
    CHECK_ROCBLAS_ERROR(hipsolverGetStream(handle, &stream));
    double start;

    for(int iter = 0; iter < hot_calls; iter++)
    {
        potrf_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);

        start = get_time_us_sync(stream);
        hipsolver_potrf(
            API, handle, uplo, n, dA.data(), lda, stA, dWork.data(), lwork, dInfo.data(), bc);
        *gpu_time_used += get_time_us_sync(stream) - start;
    }
    *gpu_time_used /= hot_calls;
}

template <testAPI_t API, bool BATCHED, bool STRIDED, typename T>
void testing_potrf(Arguments& argus)
{
    // get arguments
    hipsolver_local_handle handle;
    char                   uploC = argus.get<char>("uplo");
    int                    n     = argus.get<int>("n");
    int                    lda   = argus.get<int>("lda", n);
    int                    stA   = argus.get<int>("strideA", lda * n);
    int                    bc    = argus.batch_count;

    hipsolverFillMode_t uplo      = char2hipsolver_fill(uploC);
    int                 hot_calls = argus.iters;

    rocblas_stride stARes = (argus.unit_check || argus.norm_check) ? stA : 0;

    // check non-supported values
    if(uplo != HIPSOLVER_FILL_MODE_UPPER && uplo != HIPSOLVER_FILL_MODE_LOWER)
    {
        if(BATCHED)
        {
            EXPECT_ROCBLAS_STATUS(hipsolver_potrf(API,
                                                  handle,
                                                  uplo,
                                                  n,
                                                  (T**)nullptr,
                                                  lda,
                                                  stA,
                                                  (T*)nullptr,
                                                  0,
                                                  (int*)nullptr,
                                                  bc),
                                  HIPSOLVER_STATUS_INVALID_VALUE);
        }
        else
        {
            EXPECT_ROCBLAS_STATUS(
                hipsolver_potrf(
                    API, handle, uplo, n, (T*)nullptr, lda, stA, (T*)nullptr, 0, (int*)nullptr, bc),
                HIPSOLVER_STATUS_INVALID_VALUE);
        }

        if(argus.timing)
            rocsolver_bench_inform(inform_invalid_args);

        return;
    }

    // determine sizes
    size_t size_A    = size_t(lda) * n;
    double max_error = 0, gpu_time_used = 0, cpu_time_used = 0;

    size_t size_ARes = (argus.unit_check || argus.norm_check) ? size_A : 0;

    // check invalid sizes
    bool invalid_size = (n < 0 || lda < n || bc < 0);
    if(invalid_size)
    {
#if defined(__HIP_PLATFORM_HCC__) || defined(__HIP_PLATFORM_AMD__)
        if(BATCHED)
        {
            EXPECT_ROCBLAS_STATUS(hipsolver_potrf(API,
                                                  handle,
                                                  uplo,
                                                  n,
                                                  (T**)nullptr,
                                                  lda,
                                                  stA,
                                                  (T*)nullptr,
                                                  0,
                                                  (int*)nullptr,
                                                  bc),
                                  HIPSOLVER_STATUS_INVALID_VALUE);
        }
        else
        {
            EXPECT_ROCBLAS_STATUS(
                hipsolver_potrf(
                    API, handle, uplo, n, (T*)nullptr, lda, stA, (T*)nullptr, 0, (int*)nullptr, bc),
                HIPSOLVER_STATUS_INVALID_VALUE);
        }
#endif

        if(argus.timing)
            rocsolver_bench_inform(inform_invalid_size);

        return;
    }

    // memory size query is necessary
    int size_W;
    if(BATCHED)
        hipsolver_potrf_bufferSize(API, handle, uplo, n, (T**)nullptr, lda, &size_W, bc);
    else
        hipsolver_potrf_bufferSize(API, handle, uplo, n, (T*)nullptr, lda, &size_W, bc);

    if(argus.mem_query)
    {
        rocsolver_bench_inform(inform_mem_query, size_W);
        return;
    }

    if(BATCHED)
    {
        // memory allocations
        host_batch_vector<T>             hA(size_A, 1, bc);
        host_batch_vector<T>             hARes(size_ARes, 1, bc);
        host_strided_batch_vector<int>   hInfo(1, 1, 1, bc);
        host_strided_batch_vector<int>   hInfoRes(1, 1, 1, bc);
        device_batch_vector<T>           dA(size_A, 1, bc);
        device_strided_batch_vector<int> dInfo(1, 1, 1, bc);
        device_strided_batch_vector<T>   dWork(size_W, 1, size_W, 1); // size_W accounts for bc
        if(size_A)
            CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dInfo.memcheck());
        if(size_W)
            CHECK_HIP_ERROR(dWork.memcheck());

        // check computations
        if(argus.unit_check || argus.norm_check)
            potrf_getError<API, T>(handle,
                                   uplo,
                                   n,
                                   dA,
                                   lda,
                                   stA,
                                   dWork,
                                   size_W,
                                   dInfo,
                                   bc,
                                   hA,
                                   hARes,
                                   hInfo,
                                   hInfoRes,
                                   &max_error);

        // collect performance data
        if(argus.timing)
            potrf_getPerfData<API, T>(handle,
                                      uplo,
                                      n,
                                      dA,
                                      lda,
                                      stA,
                                      dWork,
                                      size_W,
                                      dInfo,
                                      bc,
                                      hA,
                                      hInfo,
                                      &gpu_time_used,
                                      &cpu_time_used,
                                      hot_calls,
                                      argus.perf);
    }

    else
    {
        // memory allocations
        host_strided_batch_vector<T>     hA(size_A, 1, stA, bc);
        host_strided_batch_vector<T>     hARes(size_ARes, 1, stARes, bc);
        host_strided_batch_vector<int>   hInfo(1, 1, 1, bc);
        host_strided_batch_vector<int>   hInfoRes(1, 1, 1, bc);
        device_strided_batch_vector<T>   dA(size_A, 1, stA, bc);
        device_strided_batch_vector<int> dInfo(1, 1, 1, bc);
        device_strided_batch_vector<T>   dWork(size_W, 1, size_W, 1); // size_W accounts for bc
        if(size_A)
            CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dInfo.memcheck());
        if(size_W)
            CHECK_HIP_ERROR(dWork.memcheck());

        // check computations
        if(argus.unit_check || argus.norm_check)
            potrf_getError<API, T>(handle,
                                   uplo,
                                   n,
                                   dA,
                                   lda,
                                   stA,
                                   dWork,
                                   size_W,
                                   dInfo,
                                   bc,
                                   hA,
                                   hARes,
                                   hInfo,
                                   hInfoRes,
                                   &max_error);

        // collect performance data
        if(argus.timing)
            potrf_getPerfData<API, T>(handle,
                                      uplo,
                                      n,
                                      dA,
                                      lda,
                                      stA,
                                      dWork,
                                      size_W,
                                      dInfo,
                                      bc,
                                      hA,
                                      hInfo,
                                      &gpu_time_used,
                                      &cpu_time_used,
                                      hot_calls,
                                      argus.perf);
    }

    // validate results for rocsolver-test
    // using n * machine_precision as tolerance
    if(argus.unit_check)
        ROCSOLVER_TEST_CHECK(T, max_error, n);

    // output results for rocsolver-bench
    if(argus.timing)
    {
        if(!argus.perf)
        {
            std::cerr << "\n============================================\n";
            std::cerr << "Arguments:\n";
            std::cerr << "============================================\n";
            if(BATCHED)
            {
                rocsolver_bench_output("uplo", "n", "lda", "batch_c");
                rocsolver_bench_output(uploC, n, lda, bc);
            }
            else if(STRIDED)
            {
                rocsolver_bench_output("uplo", "n", "lda", "strideA", "batch_c");
                rocsolver_bench_output(uploC, n, lda, stA, bc);
            }
            else
            {
                rocsolver_bench_output("uplo", "n", "lda");
                rocsolver_bench_output(uploC, n, lda);
            }
            std::cerr << "\n============================================\n";
            std::cerr << "Results:\n";
            std::cerr << "============================================\n";
            if(argus.norm_check)
            {
                rocsolver_bench_output("cpu_time", "gpu_time", "error");
                rocsolver_bench_output(cpu_time_used, gpu_time_used, max_error);
            }
            else
            {
                rocsolver_bench_output("cpu_time", "gpu_time");
                rocsolver_bench_output(cpu_time_used, gpu_time_used);
            }
            std::cerr << std::endl;
        }
        else
        {
            if(argus.norm_check)
                rocsolver_bench_output(gpu_time_used, max_error);
            else
                rocsolver_bench_output(gpu_time_used);
        }
    }
}