1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
/* ************************************************************************
* Copyright (C) 2020-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*
* ************************************************************************ */
#pragma once
#include "clientcommon.hpp"
template <testAPI_t API, typename T, typename U, typename V>
void potri_checkBadArgs(const hipsolverHandle_t handle,
const hipsolverFillMode_t uplo,
const int n,
T dA,
const int lda,
const int stA,
U dWork,
const int lwork,
V dinfo,
const int bc)
{
// handle
EXPECT_ROCBLAS_STATUS(
hipsolver_potri(API, nullptr, uplo, n, dA, lda, stA, dWork, lwork, dinfo, bc),
HIPSOLVER_STATUS_NOT_INITIALIZED);
// values
EXPECT_ROCBLAS_STATUS(
hipsolver_potri(
API, handle, hipsolverFillMode_t(-1), n, dA, lda, stA, dWork, lwork, dinfo, bc),
HIPSOLVER_STATUS_INVALID_ENUM);
#if defined(__HIP_PLATFORM_HCC__) || defined(__HIP_PLATFORM_AMD__)
// pointers
EXPECT_ROCBLAS_STATUS(
hipsolver_potri(API, handle, uplo, n, (T) nullptr, lda, stA, dWork, lwork, dinfo, bc),
HIPSOLVER_STATUS_INVALID_VALUE);
EXPECT_ROCBLAS_STATUS(
hipsolver_potri(API, handle, uplo, n, dA, lda, stA, dWork, lwork, (V) nullptr, bc),
HIPSOLVER_STATUS_INVALID_VALUE);
#endif
}
template <testAPI_t API, bool BATCHED, bool STRIDED, typename T>
void testing_potri_bad_arg()
{
// safe arguments
hipsolver_local_handle handle;
hipsolverFillMode_t uplo = HIPSOLVER_FILL_MODE_UPPER;
int n = 1;
int lda = 1;
int stA = 1;
int bc = 1;
if(BATCHED)
{
// // memory allocations
// device_batch_vector<T> dA(1, 1, 1);
// device_strided_batch_vector<int> dinfo(1, 1, 1, 1);
// CHECK_HIP_ERROR(dA.memcheck());
// CHECK_HIP_ERROR(dinfo.memcheck());
// int size_W;
// hipsolver_potri_bufferSize(API, handle, uplo, n, dA.data(), lda, &size_W);
// device_strided_batch_vector<T> dWork(size_W, 1, size_W, 1);
// if(size_W)
// CHECK_HIP_ERROR(dWork.memcheck());
// // check bad arguments
// potri_checkBadArgs<API>(
// handle, uplo, n, dA.data(), lda, stA, dWork.data(), size_W, dinfo.data(), bc);
}
else
{
// memory allocations
device_strided_batch_vector<T> dA(1, 1, 1, 1);
device_strided_batch_vector<int> dinfo(1, 1, 1, 1);
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dinfo.memcheck());
int size_W;
hipsolver_potri_bufferSize(API, handle, uplo, n, dA.data(), lda, &size_W);
device_strided_batch_vector<T> dWork(size_W, 1, size_W, 1);
if(size_W)
CHECK_HIP_ERROR(dWork.memcheck());
// check bad arguments
potri_checkBadArgs<API>(
handle, uplo, n, dA.data(), lda, stA, dWork.data(), size_W, dinfo.data(), bc);
}
}
template <bool CPU, bool GPU, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potri_initData(const hipsolverHandle_t handle,
const hipsolverFillMode_t uplo,
const int n,
Td& dA,
const int lda,
const int stA,
Ud& dInfo,
const int bc,
Th& hA,
Uh& hInfo)
{
if(CPU)
{
rocblas_init<T>(hA, true);
for(rocblas_int b = 0; b < bc; ++b)
{
// scale to ensure positive definiteness
for(rocblas_int i = 0; i < n; i++)
hA[b][i + i * lda] = hA[b][i + i * lda] * conj(hA[b][i + i * lda]) * 400;
// do the Cholesky factorization of matrix A w/ the reference LAPACK routine
cpu_potrf(uplo, n, hA[b], lda, hInfo[b]);
}
}
if(GPU)
{
// now copy data to the GPU
CHECK_HIP_ERROR(dA.transfer_from(hA));
}
}
template <testAPI_t API,
typename T,
typename Td,
typename Ud,
typename Vd,
typename Th,
typename Uh>
void potri_getError(const hipsolverHandle_t handle,
const hipsolverFillMode_t uplo,
const int n,
Td& dA,
const int lda,
const int stA,
Vd& dWork,
const int lwork,
Ud& dInfo,
const int bc,
Th& hA,
Th& hARes,
Uh& hInfo,
Uh& hInfoRes,
double* max_err)
{
// input data initialization
potri_initData<true, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);
// execute computations
// GPU lapack
CHECK_ROCBLAS_ERROR(hipsolver_potri(
API, handle, uplo, n, dA.data(), lda, stA, dWork.data(), lwork, dInfo.data(), bc));
CHECK_HIP_ERROR(hARes.transfer_from(dA));
CHECK_HIP_ERROR(hInfoRes.transfer_from(dInfo));
// CPU lapack
for(int b = 0; b < bc; ++b)
cpu_potri(uplo, n, hA[b], lda, hInfo[b]);
// check info for singularities
double err = 0;
*max_err = 0;
for(rocblas_int b = 0; b < bc; ++b)
{
EXPECT_EQ(hInfo[b][0], hInfoRes[b][0]) << "where b = " << b;
if(hInfo[b][0] != hInfoRes[b][0])
err++;
}
*max_err += err;
// error is ||hA - hARes|| / ||hA||
// (THIS DOES NOT ACCOUNT FOR NUMERICAL REPRODUCIBILITY ISSUES.
// IT MIGHT BE REVISITED IN THE FUTURE)
// using frobenius norm
for(rocblas_int b = 0; b < bc; ++b)
{
if(hInfoRes[b][0] == 0)
{
if(uplo == HIPSOLVER_FILL_MODE_UPPER)
err = norm_error_upperTr('F', n, n, lda, hA[b], hARes[b]);
else
err = norm_error_lowerTr('F', n, n, lda, hA[b], hARes[b]);
*max_err = err > *max_err ? err : *max_err;
}
}
}
template <testAPI_t API,
typename T,
typename Td,
typename Ud,
typename Vd,
typename Th,
typename Uh>
void potri_getPerfData(const hipsolverHandle_t handle,
const hipsolverFillMode_t uplo,
const int n,
Td& dA,
const int lda,
const int stA,
Vd& dWork,
const int lwork,
Ud& dInfo,
const int bc,
Th& hA,
Uh& hInfo,
double* gpu_time_used,
double* cpu_time_used,
const int hot_calls,
const bool perf)
{
if(!perf)
{
potri_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);
// cpu-lapack performance (only if not in perf mode)
*cpu_time_used = get_time_us_no_sync();
for(int b = 0; b < bc; ++b)
cpu_potri(uplo, n, hA[b], lda, hInfo[b]);
*cpu_time_used = get_time_us_no_sync() - *cpu_time_used;
}
potri_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);
// cold calls
for(int iter = 0; iter < 2; iter++)
{
potri_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);
CHECK_ROCBLAS_ERROR(hipsolver_potri(
API, handle, uplo, n, dA.data(), lda, stA, dWork.data(), lwork, dInfo.data(), bc));
}
// gpu-lapack performance
hipStream_t stream;
CHECK_ROCBLAS_ERROR(hipsolverGetStream(handle, &stream));
double start;
for(int iter = 0; iter < hot_calls; iter++)
{
potri_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo);
start = get_time_us_sync(stream);
hipsolver_potri(
API, handle, uplo, n, dA.data(), lda, stA, dWork.data(), lwork, dInfo.data(), bc);
*gpu_time_used += get_time_us_sync(stream) - start;
}
*gpu_time_used /= hot_calls;
}
template <testAPI_t API, bool BATCHED, bool STRIDED, typename T>
void testing_potri(Arguments& argus)
{
// get arguments
hipsolver_local_handle handle;
char uploC = argus.get<char>("uplo");
int n = argus.get<int>("n");
int lda = argus.get<int>("lda", n);
int stA = argus.get<int>("strideA", lda * n);
int bc = argus.batch_count;
hipsolverFillMode_t uplo = char2hipsolver_fill(uploC);
int hot_calls = argus.iters;
rocblas_stride stARes = (argus.unit_check || argus.norm_check) ? stA : 0;
// check non-supported values
if(uplo != HIPSOLVER_FILL_MODE_UPPER && uplo != HIPSOLVER_FILL_MODE_LOWER)
{
if(BATCHED)
{
// EXPECT_ROCBLAS_STATUS(hipsolver_potri(API,
// handle,
// uplo,
// n,
// (T**)nullptr,
// lda,
// stA,
// (T*)nullptr,
// 0,
// (int*)nullptr,
// bc),
// HIPSOLVER_STATUS_INVALID_VALUE);
}
else
{
EXPECT_ROCBLAS_STATUS(
hipsolver_potri(
API, handle, uplo, n, (T*)nullptr, lda, stA, (T*)nullptr, 0, (int*)nullptr, bc),
HIPSOLVER_STATUS_INVALID_VALUE);
}
if(argus.timing)
rocsolver_bench_inform(inform_invalid_args);
return;
}
// determine sizes
size_t size_A = size_t(lda) * n;
double max_error = 0, gpu_time_used = 0, cpu_time_used = 0;
size_t size_ARes = (argus.unit_check || argus.norm_check) ? size_A : 0;
// check invalid sizes
bool invalid_size = (n < 0 || lda < n || bc < 0);
if(invalid_size)
{
if(BATCHED)
{
// EXPECT_ROCBLAS_STATUS(hipsolver_potri(API,
// handle,
// uplo,
// n,
// (T**)nullptr,
// lda,
// stA,
// (T*)nullptr,
// 0,
// (int*)nullptr,
// bc),
// HIPSOLVER_STATUS_INVALID_VALUE);
}
else
{
EXPECT_ROCBLAS_STATUS(
hipsolver_potri(
API, handle, uplo, n, (T*)nullptr, lda, stA, (T*)nullptr, 0, (int*)nullptr, bc),
HIPSOLVER_STATUS_INVALID_VALUE);
}
if(argus.timing)
rocsolver_bench_inform(inform_invalid_size);
return;
}
// memory size query is necessary
int size_W;
hipsolver_potri_bufferSize(API, handle, uplo, n, (T*)nullptr, lda, &size_W);
if(argus.mem_query)
{
rocsolver_bench_inform(inform_mem_query, size_W);
return;
}
if(BATCHED)
{
// // memory allocations
// host_batch_vector<T> hA(size_A, 1, bc);
// host_batch_vector<T> hARes(size_ARes, 1, bc);
// host_strided_batch_vector<int> hInfo(1, 1, 1, bc);
// host_strided_batch_vector<int> hInfoRes(1, 1, 1, bc);
// device_batch_vector<T> dA(size_A, 1, bc);
// device_strided_batch_vector<int> dInfo(1, 1, 1, bc);
// device_strided_batch_vector<T> dWork(size_W, 1, size_W, 1); // size_W accounts for bc
// if(size_A)
// CHECK_HIP_ERROR(dA.memcheck());
// CHECK_HIP_ERROR(dInfo.memcheck());
// if(size_W)
// CHECK_HIP_ERROR(dWork.memcheck());
// // check computations
// if(argus.unit_check || argus.norm_check)
// potri_getError<API, T>(handle,
// uplo,
// n,
// dA,
// lda,
// stA,
// dWork,
// size_W,
// dInfo,
// bc,
// hA,
// hARes,
// hInfo,
// hInfoRes,
// &max_error);
// // collect performance data
// if(argus.timing)
// potri_getPerfData<API, T>(handle,
// uplo,
// n,
// dA,
// lda,
// stA,
// dWork,
// size_W,
// dInfo,
// bc,
// hA,
// hInfo,
// &gpu_time_used,
// &cpu_time_used,
// hot_calls,
// argus.perf);
}
else
{
// memory allocations
host_strided_batch_vector<T> hA(size_A, 1, stA, bc);
host_strided_batch_vector<T> hARes(size_ARes, 1, stARes, bc);
host_strided_batch_vector<int> hInfo(1, 1, 1, bc);
host_strided_batch_vector<int> hInfoRes(1, 1, 1, bc);
device_strided_batch_vector<T> dA(size_A, 1, stA, bc);
device_strided_batch_vector<int> dInfo(1, 1, 1, bc);
device_strided_batch_vector<T> dWork(size_W, 1, size_W, 1); // size_W accounts for bc
if(size_A)
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dInfo.memcheck());
if(size_W)
CHECK_HIP_ERROR(dWork.memcheck());
// check computations
if(argus.unit_check || argus.norm_check)
potri_getError<API, T>(handle,
uplo,
n,
dA,
lda,
stA,
dWork,
size_W,
dInfo,
bc,
hA,
hARes,
hInfo,
hInfoRes,
&max_error);
// collect performance data
if(argus.timing)
potri_getPerfData<API, T>(handle,
uplo,
n,
dA,
lda,
stA,
dWork,
size_W,
dInfo,
bc,
hA,
hInfo,
&gpu_time_used,
&cpu_time_used,
hot_calls,
argus.perf);
}
// validate results for rocsolver-test
// using n * machine_precision as tolerance
if(argus.unit_check)
ROCSOLVER_TEST_CHECK(T, max_error, n);
// output results for rocsolver-bench
if(argus.timing)
{
if(!argus.perf)
{
std::cerr << "\n============================================\n";
std::cerr << "Arguments:\n";
std::cerr << "============================================\n";
if(BATCHED)
{
rocsolver_bench_output("uplo", "n", "lda", "batch_c");
rocsolver_bench_output(uploC, n, lda, bc);
}
else if(STRIDED)
{
rocsolver_bench_output("uplo", "n", "lda", "strideA", "batch_c");
rocsolver_bench_output(uploC, n, lda, stA, bc);
}
else
{
rocsolver_bench_output("uplo", "n", "lda");
rocsolver_bench_output(uploC, n, lda);
}
std::cerr << "\n============================================\n";
std::cerr << "Results:\n";
std::cerr << "============================================\n";
if(argus.norm_check)
{
rocsolver_bench_output("cpu_time", "gpu_time", "error");
rocsolver_bench_output(cpu_time_used, gpu_time_used, max_error);
}
else
{
rocsolver_bench_output("cpu_time", "gpu_time");
rocsolver_bench_output(cpu_time_used, gpu_time_used);
}
std::cerr << std::endl;
}
else
{
if(argus.norm_check)
rocsolver_bench_output(gpu_time_used, max_error);
else
rocsolver_bench_output(gpu_time_used);
}
}
}
|