1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/* ************************************************************************
* Copyright (C) 2018-2019 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#pragma once
#ifndef TESTING_CSR2COO_HPP
#define TESTING_CSR2COO_HPP
#include "hipsparse.hpp"
#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"
#include <algorithm>
#include <hipsparse.h>
#include <string>
using namespace hipsparse;
using namespace hipsparse_test;
void testing_csr2coo_bad_arg(void)
{
#if(!defined(CUDART_VERSION))
int m = 100;
int nnz = 100;
int safe_size = 100;
hipsparseStatus_t status;
std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
hipsparseHandle_t handle = unique_ptr_handle->handle;
auto csr_row_ptr_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto coo_row_ind_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
int* csr_row_ptr = (int*)csr_row_ptr_managed.get();
int* coo_row_ind = (int*)coo_row_ind_managed.get();
if(!csr_row_ptr || !coo_row_ind)
{
PRINT_IF_HIP_ERROR(hipErrorOutOfMemory);
return;
}
// Testing for(csr_row_ptr == nullptr)
{
int* csr_row_ptr_null = nullptr;
status = hipsparseXcsr2coo(
handle, csr_row_ptr_null, nnz, m, coo_row_ind, HIPSPARSE_INDEX_BASE_ZERO);
verify_hipsparse_status_invalid_pointer(status, "Error: csr_row_ptr is nullptr");
}
// Testing for(coo_row_ind == nullptr)
{
int* coo_row_ind_null = nullptr;
status = hipsparseXcsr2coo(
handle, csr_row_ptr, nnz, m, coo_row_ind_null, HIPSPARSE_INDEX_BASE_ZERO);
verify_hipsparse_status_invalid_pointer(status, "Error: coo_row_ind is nullptr");
}
// Testing for(handle == nullptr)
{
hipsparseHandle_t handle_null = nullptr;
status = hipsparseXcsr2coo(
handle_null, csr_row_ptr, nnz, m, coo_row_ind, HIPSPARSE_INDEX_BASE_ZERO);
verify_hipsparse_status_invalid_handle(status);
}
#endif
}
hipsparseStatus_t testing_csr2coo(Arguments argus)
{
int m = argus.M;
int n = argus.N;
int safe_size = 100;
hipsparseIndexBase_t idx_base = argus.idx_base;
std::string binfile = "";
std::string filename = "";
hipsparseStatus_t status;
// When in testing mode, M == N == -99 indicates that we are testing with a real
// matrix from cise.ufl.edu
if(m == -99 && n == -99 && argus.timing == 0)
{
binfile = argus.filename;
m = n = safe_size;
}
if(argus.timing == 1)
{
filename = argus.filename;
}
double scale = 0.02;
if(m > 1000 || n > 1000)
{
scale = 2.0 / std::max(m, n);
}
int nnz = m * scale * n;
std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
hipsparseHandle_t handle = unique_ptr_handle->handle;
// Argument sanity check before allocating invalid memory
if(m <= 0 || n <= 0 || nnz <= 0)
{
#ifdef __HIP_PLATFORM_NVIDIA__
// Do not test args in cusparse
return HIPSPARSE_STATUS_SUCCESS;
#endif
auto csr_row_ptr_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto coo_row_ind_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
int* csr_row_ptr = (int*)csr_row_ptr_managed.get();
int* coo_row_ind = (int*)coo_row_ind_managed.get();
if(!csr_row_ptr || !coo_row_ind)
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
"!csr_row_ptr || !coo_row_ind");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
status = hipsparseXcsr2coo(handle, csr_row_ptr, nnz, m, coo_row_ind, idx_base);
if(m < 0 || nnz < 0)
{
verify_hipsparse_status_invalid_size(status, "Error: m < 0 || nnz < 0");
}
else
{
verify_hipsparse_status_success(status, "m >= 0 && n >= 0 && nnz >= 0");
}
return HIPSPARSE_STATUS_SUCCESS;
}
// Host structures
std::vector<int> hcsr_row_ptr;
std::vector<int> hcoo_row_ind;
std::vector<int> hcol_ind;
std::vector<float> hval(nnz);
// Initial data on CPU
srand(12345ULL);
if(binfile != "")
{
if(read_bin_matrix(binfile.c_str(), m, n, nnz, hcsr_row_ptr, hcol_ind, hval, idx_base) != 0)
{
fprintf(stderr, "Cannot open [read] %s\n", binfile.c_str());
return HIPSPARSE_STATUS_INTERNAL_ERROR;
}
}
else if(argus.laplacian)
{
m = n = gen_2d_laplacian(argus.laplacian, hcsr_row_ptr, hcol_ind, hval, idx_base);
nnz = hcsr_row_ptr[m];
}
else
{
if(filename != "")
{
if(read_mtx_matrix(filename.c_str(), m, n, nnz, hcoo_row_ind, hcol_ind, hval, idx_base)
!= 0)
{
fprintf(stderr, "Cannot open [read] %s\n", filename.c_str());
return HIPSPARSE_STATUS_INTERNAL_ERROR;
}
}
else
{
gen_matrix_coo(m, n, nnz, hcoo_row_ind, hcol_ind, hval, idx_base);
}
// Convert COO to CSR
hcsr_row_ptr.resize(m + 1, 0);
for(int i = 0; i < nnz; ++i)
{
++hcsr_row_ptr[hcoo_row_ind[i] + 1 - idx_base];
}
hcsr_row_ptr[0] = idx_base;
for(int i = 0; i < m; ++i)
{
hcsr_row_ptr[i + 1] += hcsr_row_ptr[i];
}
}
// Allocate memory on the device
auto dcsr_row_ptr_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * (m + 1)), device_free};
auto dcoo_row_ind_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * nnz), device_free};
int* dcsr_row_ptr = (int*)dcsr_row_ptr_managed.get();
int* dcoo_row_ind = (int*)dcoo_row_ind_managed.get();
if(!dcsr_row_ptr || !dcoo_row_ind)
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
"!dcsr_row_ptr || !dcoo_row_ind");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
// Copy data from host to device
CHECK_HIP_ERROR(
hipMemcpy(dcsr_row_ptr, hcsr_row_ptr.data(), sizeof(int) * (m + 1), hipMemcpyHostToDevice));
if(argus.unit_check)
{
CHECK_HIPSPARSE_ERROR(
hipsparseXcsr2coo(handle, dcsr_row_ptr, nnz, m, dcoo_row_ind, idx_base));
// Copy output from device to host
hcoo_row_ind.resize(nnz);
CHECK_HIP_ERROR(
hipMemcpy(hcoo_row_ind.data(), dcoo_row_ind, sizeof(int) * nnz, hipMemcpyDeviceToHost));
// CPU conversion to COO
std::vector<int> hcoo_row_ind_gold(nnz);
for(int i = 0; i < m; ++i)
{
int row_begin = hcsr_row_ptr[i] - idx_base;
int row_end = hcsr_row_ptr[i + 1] - idx_base;
for(int j = row_begin; j < row_end; ++j)
{
hcoo_row_ind_gold[j] = i + idx_base;
}
}
// Unit check
unit_check_general(1, nnz, 1, hcoo_row_ind_gold.data(), hcoo_row_ind.data());
}
return HIPSPARSE_STATUS_SUCCESS;
}
#endif // TESTING_CSR2COO_HPP
|