File: testing_csrilusv.hpp

package info (click to toggle)
hipsparse 5.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,784 kB
  • sloc: cpp: 92,662; f90: 7,672; sh: 584; python: 557; makefile: 34; xml: 9
file content (489 lines) | stat: -rw-r--r-- 21,433 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/* ************************************************************************
 * Copyright (C) 2018-2019 Advanced Micro Devices, Inc. All rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * ************************************************************************ */

#pragma once
#ifndef TESTING_CSRILUSV_HPP
#define TESTING_CSRILUSV_HPP

#include "hipsparse.hpp"
#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"

#include <algorithm>
#include <cmath>
#include <hipsparse.h>
#include <limits>
#include <string>

using namespace hipsparse;
using namespace hipsparse_test;

template <typename T>
hipsparseStatus_t testing_csrilusv(Arguments argus)
{
#if(!defined(CUDART_VERSION) || CUDART_VERSION < 12000)
    hipsparseIndexBase_t idx_base = argus.idx_base;

    std::unique_ptr<handle_struct> test_handle(new handle_struct);
    hipsparseHandle_t              handle = test_handle->handle;

    std::unique_ptr<descr_struct> test_descr_M(new descr_struct);
    hipsparseMatDescr_t           descr_M = test_descr_M->descr;

    std::unique_ptr<csrilu02_struct> test_csrilu02_info(new csrilu02_struct);
    csrilu02Info_t                   info_M = test_csrilu02_info->info;

    // Initialize the matrix descriptor
    CHECK_HIPSPARSE_ERROR(hipsparseSetMatIndexBase(descr_M, idx_base));

    // Host structures
    std::vector<int> hcsr_row_ptr;
    std::vector<int> hcsr_col_ind;
    std::vector<T>   hcsr_val;

    // Initial Data on CPU
    int m;
    int n;
    int nnz;

    if(read_bin_matrix(
           argus.filename.c_str(), m, n, nnz, hcsr_row_ptr, hcsr_col_ind, hcsr_val, idx_base)
       != 0)
    {
        fprintf(stderr, "Cannot open [read] %s\n", argus.filename.c_str());
        return HIPSPARSE_STATUS_INTERNAL_ERROR;
    }

    // Allocate memory on device
    auto dptr_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * (m + 1)), device_free};
    auto dcol_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * nnz), device_free};
    auto dval_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz), device_free};
    auto d_position_managed = hipsparse_unique_ptr{device_malloc(sizeof(int)), device_free};

    int* dptr       = (int*)dptr_managed.get();
    int* dcol       = (int*)dcol_managed.get();
    T*   dval       = (T*)dval_managed.get();
    int* d_position = (int*)d_position_managed.get();

    if(!dval || !dptr || !dcol || !d_position)
    {
        verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
                                        "!dval || !dptr || !dcol || !d_position");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // copy data from CPU to device
    CHECK_HIP_ERROR(
        hipMemcpy(dptr, hcsr_row_ptr.data(), sizeof(int) * (m + 1), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dcol, hcsr_col_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dval, hcsr_val.data(), sizeof(T) * nnz, hipMemcpyHostToDevice));

    // Obtain csrilu02 buffer size
    int size;
    CHECK_HIPSPARSE_ERROR(
        hipsparseXcsrilu02_bufferSize(handle, m, nnz, descr_M, dval, dptr, dcol, info_M, &size));

    // Allocate buffer on the device
    auto dbuffer_managed = hipsparse_unique_ptr{device_malloc(sizeof(char) * size), device_free};

    void* dbuffer = (void*)dbuffer_managed.get();

    if(!dbuffer)
    {
        verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED, "!dbuffer");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // csrilu02 analysis
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrilu02_analysis(handle,
                                                      m,
                                                      nnz,
                                                      descr_M,
                                                      dval,
                                                      dptr,
                                                      dcol,
                                                      info_M,
                                                      HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                                      dbuffer));

    // Compute incomplete LU factorization
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrilu02(handle,
                                             m,
                                             nnz,
                                             descr_M,
                                             dval,
                                             dptr,
                                             dcol,
                                             info_M,
                                             HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                             dbuffer));

    // Check for zero pivot
    int               hposition_1, hposition_2;
    hipsparseStatus_t pivot_status_1, pivot_status_2;

    // Host pointer mode
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
    pivot_status_1 = hipsparseXcsrilu02_zeroPivot(handle, info_M, &hposition_1);

    // device pointer mode
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
    pivot_status_2 = hipsparseXcsrilu02_zeroPivot(handle, info_M, d_position);

    // Copy output to CPU
    std::vector<T> iluresult(nnz);
    CHECK_HIP_ERROR(hipMemcpy(iluresult.data(), dval, sizeof(T) * nnz, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(&hposition_2, d_position, sizeof(int), hipMemcpyDeviceToHost));

    // Compute host reference csrilu0
    int position_gold = csrilu0(m,
                                hcsr_row_ptr.data(),
                                hcsr_col_ind.data(),
                                hcsr_val.data(),
                                idx_base,
                                false,
                                0.0,
                                make_DataType<T>(0.0, 0.0));

    // Check zero pivot results
    unit_check_general(1, 1, 1, &position_gold, &hposition_1);
    unit_check_general(1, 1, 1, &position_gold, &hposition_2);

    // If zero pivot was found, do not go further
    if(hposition_1 != -1)
    {
        verify_hipsparse_status_zero_pivot(pivot_status_1, "expected HIPSPARSE_STATUS_ZERO_PIVOT");
        return HIPSPARSE_STATUS_SUCCESS;
    }

    if(hposition_2 != -1)
    {
        verify_hipsparse_status_zero_pivot(pivot_status_2, "expected HIPSPARSE_STATUS_ZERO_PIVOT");
        return HIPSPARSE_STATUS_SUCCESS;
    }

// Check csrilu0 factorization
#if defined(__HIP_PLATFORM_AMD__)
    unit_check_general(1, nnz, 1, hcsr_val.data(), iluresult.data());
#elif defined(__HIP_PLATFORM_NVIDIA__)
    unit_check_near(1, nnz, 1, hcsr_val.data(), iluresult.data());
#endif

    // Create info structs for lower and upper part
    std::unique_ptr<csrsv2_struct> test_csrsv2_lower(new csrsv2_struct);
    std::unique_ptr<csrsv2_struct> test_csrsv2_upper(new csrsv2_struct);

    csrsv2Info_t info_L = test_csrsv2_lower->info;
    csrsv2Info_t info_U = test_csrsv2_upper->info;

    // Create matrix descriptors for csrsv
    std::unique_ptr<descr_struct> test_descr_L(new descr_struct);
    hipsparseMatDescr_t           descr_L = test_descr_L->descr;

    CHECK_HIPSPARSE_ERROR(hipsparseSetMatIndexBase(descr_L, idx_base));
    CHECK_HIPSPARSE_ERROR(hipsparseSetMatFillMode(descr_L, HIPSPARSE_FILL_MODE_LOWER));
    CHECK_HIPSPARSE_ERROR(hipsparseSetMatDiagType(descr_L, HIPSPARSE_DIAG_TYPE_UNIT));

    std::unique_ptr<descr_struct> test_descr_U(new descr_struct);
    hipsparseMatDescr_t           descr_U = test_descr_U->descr;

    CHECK_HIPSPARSE_ERROR(hipsparseSetMatIndexBase(descr_U, idx_base));
    CHECK_HIPSPARSE_ERROR(hipsparseSetMatFillMode(descr_U, HIPSPARSE_FILL_MODE_UPPER));
    CHECK_HIPSPARSE_ERROR(hipsparseSetMatDiagType(descr_U, HIPSPARSE_DIAG_TYPE_NON_UNIT));

    // Obtain csrsv buffer sizes
    int size_lower, size_upper;
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_bufferSize(handle,
                                                      HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                      m,
                                                      nnz,
                                                      descr_L,
                                                      dval,
                                                      dptr,
                                                      dcol,
                                                      info_L,
                                                      &size_lower));
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_bufferSize(handle,
                                                      HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                      m,
                                                      nnz,
                                                      descr_U,
                                                      dval,
                                                      dptr,
                                                      dcol,
                                                      info_U,
                                                      &size_upper));

    // Pick maximum size so that we need only one buffer
    size = std::max(size_lower, size_upper);

    // Allocate buffer on the device
    auto dbuffer_sv_managed = hipsparse_unique_ptr{device_malloc(sizeof(char) * size), device_free};

    void* dbuffer_sv = (void*)dbuffer_sv_managed.get();

    if(!dbuffer_sv)
    {
        verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED, "!dbuffer_sv");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // csrsv analysis
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_analysis(handle,
                                                    HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                    m,
                                                    nnz,
                                                    descr_L,
                                                    dval,
                                                    dptr,
                                                    dcol,
                                                    info_L,
                                                    HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                                    dbuffer_sv));

    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_analysis(handle,
                                                    HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                    m,
                                                    nnz,
                                                    descr_U,
                                                    dval,
                                                    dptr,
                                                    dcol,
                                                    info_U,
                                                    HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                                    dbuffer_sv));

    // Initialize some more structures required for Lz = x
    T h_alpha = static_cast<T>(1);

    std::vector<T> hx(m, static_cast<T>(1));
    std::vector<T> hy_gold(m);
    std::vector<T> hz_gold(m);

    // Allocate device memory
    auto dx_managed      = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
    auto dy_1_managed    = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
    auto dy_2_managed    = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
    auto dz_1_managed    = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
    auto dz_2_managed    = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
    auto d_alpha_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};

    T* dx      = (T*)dx_managed.get();
    T* dy_1    = (T*)dy_1_managed.get();
    T* dy_2    = (T*)dy_2_managed.get();
    T* dz_1    = (T*)dz_1_managed.get();
    T* dz_2    = (T*)dz_2_managed.get();
    T* d_alpha = (T*)d_alpha_managed.get();

    if(!dx || !dy_1 || !dy_2 || !dz_1 || !dz_2 || !d_alpha)
    {
        verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
                                        "!dx || !dy_1 || !dy_2 || !dz_1 || "
                                        "!dz_2 || !d_alpha");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // Copy data from CPU to device
    CHECK_HIP_ERROR(hipMemcpy(dx, hx.data(), sizeof(T) * m, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_alpha, &h_alpha, sizeof(T), hipMemcpyHostToDevice));

    // Solve Lz = x

    // host pointer mode
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_solve(handle,
                                                 HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                 m,
                                                 nnz,
                                                 &h_alpha,
                                                 descr_L,
                                                 dval,
                                                 dptr,
                                                 dcol,
                                                 info_L,
                                                 dx,
                                                 dz_1,
                                                 HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                                 dbuffer_sv));

    // Check for zero pivot
    pivot_status_1 = hipsparseXcsrsv2_zeroPivot(handle, info_L, &hposition_1);

    // device pointer mode
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_solve(handle,
                                                 HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                 m,
                                                 nnz,
                                                 d_alpha,
                                                 descr_L,
                                                 dval,
                                                 dptr,
                                                 dcol,
                                                 info_L,
                                                 dx,
                                                 dz_2,
                                                 HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                                 dbuffer_sv));

    // Check for zero pivot
    pivot_status_2 = hipsparseXcsrsv2_zeroPivot(handle, info_L, d_position);

    // Host csrsv
    hipDeviceProp_t prop;
    hipGetDeviceProperties(&prop, 0);

    position_gold = csr_lsolve(HIPSPARSE_OPERATION_NON_TRANSPOSE,
                               m,
                               hcsr_row_ptr.data(),
                               hcsr_col_ind.data(),
                               hcsr_val.data(),
                               h_alpha,
                               hx.data(),
                               hz_gold.data(),
                               idx_base,
                               HIPSPARSE_DIAG_TYPE_UNIT,
                               prop.warpSize);

    // Check zero pivot results
    unit_check_general(1, 1, 1, &position_gold, &hposition_1);
    unit_check_general(1, 1, 1, &position_gold, &hposition_2);

    // If zero pivot was found, do not go further
    if(hposition_1 != -1)
    {
        verify_hipsparse_status_zero_pivot(pivot_status_1, "expected HIPSPARSE_STATUS_ZERO_PIVOT");
        return HIPSPARSE_STATUS_SUCCESS;
    }

    if(hposition_2 != -1)
    {
        verify_hipsparse_status_zero_pivot(pivot_status_2, "expected HIPSPARSE_STATUS_ZERO_PIVOT");
        return HIPSPARSE_STATUS_SUCCESS;
    }

    // Copy output from device to CPU
    std::vector<T> hz_1(m);
    std::vector<T> hz_2(m);

    CHECK_HIP_ERROR(hipMemcpy(hz_1.data(), dz_1, sizeof(T) * m, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hz_2.data(), dz_2, sizeof(T) * m, hipMemcpyDeviceToHost));

// Check z
#if defined(__HIP_PLATFORM_AMD__)
    unit_check_general(1, m, 1, hz_gold.data(), hz_1.data());
    unit_check_general(1, m, 1, hz_gold.data(), hz_2.data());
#elif defined(__HIP_PLATFORM_NVIDIA__)
    unit_check_near(1, m, 1, hz_gold.data(), hz_1.data());
    unit_check_near(1, m, 1, hz_gold.data(), hz_2.data());
#endif

    // Solve Uy = z

    // host pointer mode
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_solve(handle,
                                                 HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                 m,
                                                 nnz,
                                                 &h_alpha,
                                                 descr_U,
                                                 dval,
                                                 dptr,
                                                 dcol,
                                                 info_U,
                                                 dz_1,
                                                 dy_1,
                                                 HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                                 dbuffer_sv));

    // Check for zero pivot
    pivot_status_1 = hipsparseXcsrsv2_zeroPivot(handle, info_U, &hposition_1);

    // device pointer mode
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
    CHECK_HIPSPARSE_ERROR(hipsparseXcsrsv2_solve(handle,
                                                 HIPSPARSE_OPERATION_NON_TRANSPOSE,
                                                 m,
                                                 nnz,
                                                 d_alpha,
                                                 descr_U,
                                                 dval,
                                                 dptr,
                                                 dcol,
                                                 info_U,
                                                 dz_2,
                                                 dy_2,
                                                 HIPSPARSE_SOLVE_POLICY_USE_LEVEL,
                                                 dbuffer_sv));

    // Check for zero pivot
    pivot_status_2 = hipsparseXcsrsv2_zeroPivot(handle, info_U, d_position);

    // Host csrsv
    position_gold = csr_usolve(HIPSPARSE_OPERATION_NON_TRANSPOSE,
                               m,
                               hcsr_row_ptr.data(),
                               hcsr_col_ind.data(),
                               hcsr_val.data(),
                               h_alpha,
                               hz_gold.data(),
                               hy_gold.data(),
                               idx_base,
                               HIPSPARSE_DIAG_TYPE_NON_UNIT,
                               prop.warpSize);

    // Check zero pivot results
    unit_check_general(1, 1, 1, &position_gold, &hposition_1);
    unit_check_general(1, 1, 1, &position_gold, &hposition_2);

    // If zero pivot was found, do not go further
    if(hposition_1 != -1)
    {
        verify_hipsparse_status_zero_pivot(pivot_status_1, "expected HIPSPARSE_STATUS_ZERO_PIVOT");
        return HIPSPARSE_STATUS_SUCCESS;
    }

    if(hposition_2 != -1)
    {
        verify_hipsparse_status_zero_pivot(pivot_status_2, "expected HIPSPARSE_STATUS_ZERO_PIVOT");
        return HIPSPARSE_STATUS_SUCCESS;
    }

    // Copy output from device to CPU
    std::vector<T> hy_1(m);
    std::vector<T> hy_2(m);

    CHECK_HIP_ERROR(hipMemcpy(hy_1.data(), dy_1, sizeof(T) * m, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hy_2.data(), dy_2, sizeof(T) * m, hipMemcpyDeviceToHost));

    // Check z
    unit_check_near(1, m, 1, hy_gold.data(), hy_1.data());
    unit_check_near(1, m, 1, hy_gold.data(), hy_2.data());
#endif

    return HIPSPARSE_STATUS_SUCCESS;
}

#endif // TESTING_CSRILUSOLVE_HPP