1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
/* ************************************************************************
* Copyright (C) 2018-2019 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#pragma once
#ifndef TESTING_CSRSORT_HPP
#define TESTING_CSRSORT_HPP
#include "hipsparse.hpp"
#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"
#include <algorithm>
#include <hipsparse.h>
#include <string>
using namespace hipsparse;
using namespace hipsparse_test;
void testing_csrsort_bad_arg(void)
{
#if(!defined(CUDART_VERSION))
int m = 100;
int n = 100;
int nnz = 100;
int safe_size = 100;
hipsparseStatus_t status;
std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
hipsparseHandle_t handle = unique_ptr_handle->handle;
std::unique_ptr<descr_struct> unique_ptr_descr(new descr_struct);
hipsparseMatDescr_t descr = unique_ptr_descr->descr;
size_t buffer_size = 0;
auto csr_row_ptr_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto csr_col_ind_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto perm_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto buffer_managed
= hipsparse_unique_ptr{device_malloc(sizeof(char) * safe_size), device_free};
int* csr_row_ptr = (int*)csr_row_ptr_managed.get();
int* csr_col_ind = (int*)csr_col_ind_managed.get();
int* perm = (int*)perm_managed.get();
void* buffer = (void*)buffer_managed.get();
if(!csr_row_ptr || !csr_col_ind || !perm || !buffer)
{
PRINT_IF_HIP_ERROR(hipErrorOutOfMemory);
return;
}
// Testing csrsort_buffer_size for bad args
// Testing for (csr_row_ptr == nullptr)
{
int* csr_row_ptr_null = nullptr;
status = hipsparseXcsrsort_bufferSizeExt(
handle, m, n, nnz, csr_row_ptr_null, csr_col_ind, &buffer_size);
verify_hipsparse_status_invalid_pointer(status, "Error: csr_row_ptr is nullptr");
}
// Testing for (csr_col_ind == nullptr)
{
int* csr_col_ind_null = nullptr;
status = hipsparseXcsrsort_bufferSizeExt(
handle, m, n, nnz, csr_row_ptr, csr_col_ind_null, &buffer_size);
verify_hipsparse_status_invalid_pointer(status, "Error: csr_col_ind is nullptr");
}
// Testing for (buffer_size == nullptr)
{
size_t* buffer_size_null = nullptr;
status = hipsparseXcsrsort_bufferSizeExt(
handle, m, n, nnz, csr_row_ptr, csr_col_ind, buffer_size_null);
verify_hipsparse_status_invalid_pointer(status, "Error: buffer_size is nullptr");
}
// Testing for (handle == nullptr)
{
hipsparseHandle_t handle_null = nullptr;
status = hipsparseXcsrsort_bufferSizeExt(
handle_null, m, n, nnz, csr_row_ptr, csr_col_ind, &buffer_size);
verify_hipsparse_status_invalid_handle(status);
}
// Testing csrsort for bad args
// Testing for (csr_row_ptr == nullptr)
{
int* csr_row_ptr_null = nullptr;
status = hipsparseXcsrsort(
handle, m, n, nnz, descr, csr_row_ptr_null, csr_col_ind, perm, buffer);
verify_hipsparse_status_invalid_pointer(status, "Error: csr_row_ptr is nullptr");
}
// Testing for (csr_col_ind == nullptr)
{
int* csr_col_ind_null = nullptr;
status = hipsparseXcsrsort(
handle, m, n, nnz, descr, csr_row_ptr, csr_col_ind_null, perm, buffer);
verify_hipsparse_status_invalid_pointer(status, "Error: csr_col_ind is nullptr");
}
// Testing for (buffer == nullptr)
{
int* buffer_null = nullptr;
status = hipsparseXcsrsort(
handle, m, n, nnz, descr, csr_row_ptr, csr_col_ind, perm, buffer_null);
verify_hipsparse_status_invalid_pointer(status, "Error: buffer is nullptr");
}
// Testing for (descr == nullptr)
{
hipsparseMatDescr_t descr_null = nullptr;
status = hipsparseXcsrsort(
handle, m, n, nnz, descr_null, csr_row_ptr, csr_col_ind, perm, buffer);
verify_hipsparse_status_invalid_pointer(status, "Error: descr is nullptr");
}
// Testing for (handle == nullptr)
{
hipsparseHandle_t handle_null = nullptr;
status = hipsparseXcsrsort(
handle_null, m, n, nnz, descr, csr_row_ptr, csr_col_ind, perm, buffer);
verify_hipsparse_status_invalid_handle(status);
}
#endif
}
hipsparseStatus_t testing_csrsort(Arguments argus)
{
#if(!defined(CUDART_VERSION) || CUDART_VERSION < 12000)
int m = argus.M;
int n = argus.N;
int safe_size = 100;
int permute = argus.temp;
hipsparseIndexBase_t idx_base = argus.idx_base;
std::string binfile = "";
std::string filename = "";
hipsparseStatus_t status;
// When in testing mode, M == N == -99 indicates that we are testing with a real
// matrix from cise.ufl.edu
if(m == -99 && n == -99 && argus.timing == 0)
{
binfile = argus.filename;
m = n = safe_size;
}
if(argus.timing == 1)
{
filename = argus.filename;
}
size_t buffer_size = 0;
double scale = 0.02;
if(m > 1000 || n > 1000)
{
scale = 2.0 / std::max(m, n);
}
int nnz = m * scale * n;
std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
hipsparseHandle_t handle = unique_ptr_handle->handle;
std::unique_ptr<descr_struct> unique_ptr_descr(new descr_struct);
hipsparseMatDescr_t descr = unique_ptr_descr->descr;
// Set matrix index base
CHECK_HIPSPARSE_ERROR(hipsparseSetMatIndexBase(descr, idx_base));
// Argument sanity check before allocating invalid memory
if(m <= 0 || n <= 0 || nnz <= 0)
{
#ifdef __HIP_PLATFORM_NVIDIA__
// Do not test args in cusparse
return HIPSPARSE_STATUS_SUCCESS;
#endif
auto csr_row_ptr_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto csr_col_ind_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto perm_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto buffer_managed
= hipsparse_unique_ptr{device_malloc(sizeof(char) * safe_size), device_free};
int* csr_row_ptr = (int*)csr_row_ptr_managed.get();
int* csr_col_ind = (int*)csr_col_ind_managed.get();
int* perm = (int*)perm_managed.get();
void* buffer = (void*)buffer_managed.get();
if(!csr_row_ptr || !csr_col_ind || !perm || !buffer)
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
"!csr_row_ptr || !csr_col_ind || !perm || !buffer");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
status = hipsparseXcsrsort_bufferSizeExt(
handle, m, n, nnz, csr_row_ptr, csr_col_ind, &buffer_size);
if(m < 0 || n < 0 || nnz < 0)
{
verify_hipsparse_status_invalid_size(status, "Error: m < 0 || n < 0 || nnz < 0");
}
else
{
verify_hipsparse_status_success(status, "m >= 0 && n >= 0 && nnz >= 0");
// Buffer size should be 4
size_t four = 4;
unit_check_general(1, 1, 1, &four, &buffer_size);
}
status
= hipsparseXcsrsort(handle, m, n, nnz, descr, csr_row_ptr, csr_col_ind, perm, buffer);
if(m < 0 || n < 0 || nnz < 0)
{
verify_hipsparse_status_invalid_size(status, "Error: m < 0 || n < 0 || nnz < 0");
}
else
{
verify_hipsparse_status_success(status, "m >= 0 && n >= 0 && nnz >= 0");
}
return HIPSPARSE_STATUS_SUCCESS;
}
// For testing, assemble a COO matrix and convert it to CSR first (on host)
// Host structures
std::vector<int> hcsr_row_ptr;
std::vector<int> hcoo_row_ind;
std::vector<int> hcsr_col_ind;
std::vector<float> hcsr_val;
// Sample initial COO matrix on CPU
srand(12345ULL);
if(binfile != "")
{
if(read_bin_matrix(
binfile.c_str(), m, n, nnz, hcsr_row_ptr, hcsr_col_ind, hcsr_val, idx_base)
!= 0)
{
fprintf(stderr, "Cannot open [read] %s\n", binfile.c_str());
return HIPSPARSE_STATUS_INTERNAL_ERROR;
}
}
else if(argus.laplacian)
{
m = n = gen_2d_laplacian(argus.laplacian, hcsr_row_ptr, hcsr_col_ind, hcsr_val, idx_base);
nnz = hcsr_row_ptr[m];
}
else
{
if(filename != "")
{
if(read_mtx_matrix(
filename.c_str(), m, n, nnz, hcoo_row_ind, hcsr_col_ind, hcsr_val, idx_base)
!= 0)
{
fprintf(stderr, "Cannot open [read] %s\n", filename.c_str());
return HIPSPARSE_STATUS_INTERNAL_ERROR;
}
}
else
{
gen_matrix_coo(m, n, nnz, hcoo_row_ind, hcsr_col_ind, hcsr_val, idx_base);
}
// Convert COO to CSR
hcsr_row_ptr.resize(m + 1, 0);
for(int i = 0; i < nnz; ++i)
{
++hcsr_row_ptr[hcoo_row_ind[i] + 1 - idx_base];
}
hcsr_row_ptr[0] = idx_base;
for(int i = 0; i < m; ++i)
{
hcsr_row_ptr[i + 1] += hcsr_row_ptr[i];
}
}
// Unsort CSR columns
std::vector<int> hperm(nnz);
std::vector<int> hcsr_col_ind_unsorted(nnz);
std::vector<float> hcsr_val_unsorted(nnz);
hcsr_col_ind_unsorted = hcsr_col_ind;
hcsr_val_unsorted = hcsr_val;
for(int i = 0; i < m; ++i)
{
int row_begin = hcsr_row_ptr[i] - idx_base;
int row_end = hcsr_row_ptr[i + 1] - idx_base;
int row_nnz = row_end - row_begin;
for(int j = row_begin; j < row_end; ++j)
{
int rng = row_begin + rand() % row_nnz;
int temp_col = hcsr_col_ind_unsorted[j];
float temp_val = hcsr_val_unsorted[j];
hcsr_col_ind_unsorted[j] = hcsr_col_ind_unsorted[rng];
hcsr_val_unsorted[j] = hcsr_val_unsorted[rng];
hcsr_col_ind_unsorted[rng] = temp_col;
hcsr_val_unsorted[rng] = temp_val;
}
}
// Allocate memory on the device
auto dcsr_row_ptr_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * (m + 1)), device_free};
auto dcsr_col_ind_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * nnz), device_free};
auto dcsr_val_managed = hipsparse_unique_ptr{device_malloc(sizeof(float) * nnz), device_free};
auto dcsr_val_sorted_managed
= hipsparse_unique_ptr{device_malloc(sizeof(float) * nnz), device_free};
auto dperm_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * nnz), device_free};
int* dcsr_row_ptr = (int*)dcsr_row_ptr_managed.get();
int* dcsr_col_ind = (int*)dcsr_col_ind_managed.get();
float* dcsr_val = (float*)dcsr_val_managed.get();
float* dcsr_val_sorted = (float*)dcsr_val_sorted_managed.get();
// Set permutation vector, if asked for
int* dperm = permute ? (int*)dperm_managed.get() : nullptr;
if(!dcsr_row_ptr || !dcsr_col_ind || !dcsr_val || !dcsr_val_sorted || (permute && !dperm))
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
"!dcsr_row_ptr || !dcsr_col_ind || !dcsr_val || "
"!dcsr_val_sorted || (permute && !dperm)");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
// Copy data from host to device
CHECK_HIP_ERROR(
hipMemcpy(dcsr_row_ptr, hcsr_row_ptr.data(), sizeof(int) * (m + 1), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(
dcsr_col_ind, hcsr_col_ind_unsorted.data(), sizeof(int) * nnz, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(
hipMemcpy(dcsr_val, hcsr_val_unsorted.data(), sizeof(float) * nnz, hipMemcpyHostToDevice));
if(argus.unit_check)
{
// Obtain buffer size
CHECK_HIPSPARSE_ERROR(hipsparseXcsrsort_bufferSizeExt(
handle, m, n, nnz, dcsr_row_ptr, dcsr_col_ind, &buffer_size));
// Allocate buffer on the device
auto dbuffer_managed
= hipsparse_unique_ptr{device_malloc(sizeof(char) * buffer_size), device_free};
void* dbuffer = (void*)dbuffer_managed.get();
if(!dbuffer)
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED, "!dbuffer");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
if(permute)
{
// Initialize perm with identity permutation
CHECK_HIPSPARSE_ERROR(hipsparseCreateIdentityPermutation(handle, nnz, dperm));
}
// Sort CSR columns
CHECK_HIPSPARSE_ERROR(hipsparseXcsrsort(
handle, m, n, nnz, descr, dcsr_row_ptr, dcsr_col_ind, dperm, dbuffer));
if(permute)
{
// Sort CSR values
CHECK_HIPSPARSE_ERROR(hipsparseSgthr(
handle, nnz, dcsr_val, dcsr_val_sorted, dperm, HIPSPARSE_INDEX_BASE_ZERO));
}
// Copy output from device to host
CHECK_HIP_ERROR(hipMemcpy(
hcsr_col_ind_unsorted.data(), dcsr_col_ind, sizeof(int) * nnz, hipMemcpyDeviceToHost));
if(permute)
{
CHECK_HIP_ERROR(hipMemcpy(hcsr_val_unsorted.data(),
dcsr_val_sorted,
sizeof(float) * nnz,
hipMemcpyDeviceToHost));
}
// Unit check
unit_check_general(1, nnz, 1, hcsr_col_ind.data(), hcsr_col_ind_unsorted.data());
if(permute)
{
unit_check_general(1, nnz, 1, hcsr_val.data(), hcsr_val_unsorted.data());
}
}
#endif
return HIPSPARSE_STATUS_SUCCESS;
}
#endif // TESTING_CSRSORT_HPP
|