1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
/* ************************************************************************
* Copyright (C) 2018-2019 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#pragma once
#ifndef TESTING_HYBMV_HPP
#define TESTING_HYBMV_HPP
#include "hipsparse.hpp"
#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"
#include <hipsparse.h>
#include <string>
using namespace hipsparse;
using namespace hipsparse_test;
#define ELL_IND_ROW(i, el, m, width) (el) * (m) + (i)
#define ELL_IND_EL(i, el, m, width) (el) + (width) * (i)
#define ELL_IND(i, el, m, width) ELL_IND_ROW(i, el, m, width)
struct testhyb
{
int m;
int n;
hipsparseHybPartition_t partition;
int ell_nnz;
int ell_width;
int* ell_col_ind;
void* ell_val;
int coo_nnz;
int* coo_row_ind;
int* coo_col_ind;
void* coo_val;
};
template <typename T>
void testing_hybmv_bad_arg(void)
{
int safe_size = 100;
T alpha = 0.6;
T beta = 0.2;
hipsparseOperation_t transA = HIPSPARSE_OPERATION_NON_TRANSPOSE;
hipsparseStatus_t status;
std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
hipsparseHandle_t handle = unique_ptr_handle->handle;
std::unique_ptr<descr_struct> unique_ptr_descr(new descr_struct);
hipsparseMatDescr_t descr = unique_ptr_descr->descr;
std::unique_ptr<hyb_struct> unique_ptr_hyb(new hyb_struct);
hipsparseHybMat_t hyb = unique_ptr_hyb->hyb;
auto dx_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
auto dy_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
T* dx = (T*)dx_managed.get();
T* dy = (T*)dy_managed.get();
if(!dx || !dy)
{
PRINT_IF_HIP_ERROR(hipErrorOutOfMemory);
return;
}
// testing for(nullptr == dx)
{
T* dx_null = nullptr;
status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb, dx_null, &beta, dy);
verify_hipsparse_status_invalid_pointer(status, "Error: dx is nullptr");
}
// testing for(nullptr == dy)
{
T* dy_null = nullptr;
status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb, dx, &beta, dy_null);
verify_hipsparse_status_invalid_pointer(status, "Error: dy is nullptr");
}
// testing for(nullptr == d_alpha)
{
T* d_alpha_null = nullptr;
status = hipsparseXhybmv(handle, transA, d_alpha_null, descr, hyb, dx, &beta, dy);
verify_hipsparse_status_invalid_pointer(status, "Error: alpha is nullptr");
}
// testing for(nullptr == d_beta)
{
T* d_beta_null = nullptr;
status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb, dx, d_beta_null, dy);
verify_hipsparse_status_invalid_pointer(status, "Error: beta is nullptr");
}
// testing for(nullptr == hyb)
{
hipsparseHybMat_t hyb_null = nullptr;
status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb_null, dx, &beta, dy);
verify_hipsparse_status_invalid_pointer(status, "Error: descr is nullptr");
}
// testing for(nullptr == descr)
{
hipsparseMatDescr_t descr_null = nullptr;
status = hipsparseXhybmv(handle, transA, &alpha, descr_null, hyb, dx, &beta, dy);
verify_hipsparse_status_invalid_pointer(status, "Error: descr is nullptr");
}
// testing for(nullptr == handle)
{
hipsparseHandle_t handle_null = nullptr;
status = hipsparseXhybmv(handle_null, transA, &alpha, descr, hyb, dx, &beta, dy);
verify_hipsparse_status_invalid_handle(status);
}
}
template <typename T>
hipsparseStatus_t testing_hybmv(Arguments argus)
{
int safe_size = 100;
int m = argus.M;
int n = argus.N;
T h_alpha = make_DataType<T>(argus.alpha);
T h_beta = make_DataType<T>(argus.beta);
hipsparseOperation_t transA = argus.transA;
hipsparseIndexBase_t idx_base = argus.idx_base;
hipsparseHybPartition_t part = argus.part;
int user_ell_width = argus.ell_width;
std::string binfile = "";
std::string filename = "";
hipsparseStatus_t status;
T zero = make_DataType<T>(0.0);
T one = make_DataType<T>(1.0);
// When in testing mode, M == N == -99 indicates that we are testing with a real
// matrix from cise.ufl.edu
if(m == -99 && n == -99 && argus.timing == 0)
{
binfile = argus.filename;
m = n = safe_size;
}
if(argus.timing == 1)
{
filename = argus.filename;
}
std::unique_ptr<handle_struct> test_handle(new handle_struct);
hipsparseHandle_t handle = test_handle->handle;
std::unique_ptr<descr_struct> test_descr(new descr_struct);
hipsparseMatDescr_t descr = test_descr->descr;
// Set matrix index base
CHECK_HIPSPARSE_ERROR(hipsparseSetMatIndexBase(descr, idx_base));
std::unique_ptr<hyb_struct> test_hyb(new hyb_struct);
hipsparseHybMat_t hyb = test_hyb->hyb;
// Determine number of non-zero elements
double scale = 0.02;
if(m > 1000 || n > 1000)
{
scale = 2.0 / std::max(m, n);
}
int nnz = m * scale * n;
// Argument sanity check before allocating invalid memory
if(m <= 0 || n <= 0 || nnz <= 0)
{
auto dptr_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto dcol_managed
= hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto dval_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
auto dx_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
auto dy_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
int* dptr = (int*)dptr_managed.get();
int* dcol = (int*)dcol_managed.get();
T* dval = (T*)dval_managed.get();
T* dx = (T*)dx_managed.get();
T* dy = (T*)dy_managed.get();
if(!dval || !dptr || !dcol || !dx || !dy)
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
"!dptr || !dcol || !dval || !dx || !dy");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
status
= hipsparseXcsr2hyb(handle, m, n, descr, dval, dptr, dcol, hyb, user_ell_width, part);
if(m < 0 || n < 0 || nnz < 0)
{
verify_hipsparse_status_invalid_size(status, "Error: m < 0 || n < 0 || nnz < 0");
}
// hybmv should be able to deal with m <= 0 || n <= 0 || nnz <= 0 even if csr2hyb fails
// because hyb structures is allocated with n = m = 0 - so nothing should happen
status = hipsparseXhybmv(handle, transA, &h_alpha, descr, hyb, dx, &h_beta, dy);
verify_hipsparse_status_success(status, "m >= 0 && n >= 0 && nnz >= 0");
return HIPSPARSE_STATUS_SUCCESS;
}
// Host structures
std::vector<int> hcsr_row_ptr;
std::vector<int> hcoo_row_ind;
std::vector<int> hcol_ind;
std::vector<T> hval;
// Initial Data on CPU
srand(12345ULL);
if(binfile != "")
{
if(read_bin_matrix(binfile.c_str(), m, n, nnz, hcsr_row_ptr, hcol_ind, hval, idx_base) != 0)
{
fprintf(stderr, "Cannot open [read] %s\n", binfile.c_str());
return HIPSPARSE_STATUS_INTERNAL_ERROR;
}
}
else if(argus.laplacian)
{
m = n = gen_2d_laplacian(argus.laplacian, hcsr_row_ptr, hcol_ind, hval, idx_base);
nnz = hcsr_row_ptr[m];
}
else
{
if(filename != "")
{
if(read_mtx_matrix(filename.c_str(), m, n, nnz, hcoo_row_ind, hcol_ind, hval, idx_base)
!= 0)
{
fprintf(stderr, "Cannot open [read] %s\n", filename.c_str());
return HIPSPARSE_STATUS_INTERNAL_ERROR;
}
}
else
{
gen_matrix_coo(m, n, nnz, hcoo_row_ind, hcol_ind, hval, idx_base);
}
// Convert COO to CSR
hcsr_row_ptr.resize(m + 1, 0);
for(int i = 0; i < nnz; ++i)
{
++hcsr_row_ptr[hcoo_row_ind[i] + 1 - idx_base];
}
hcsr_row_ptr[0] = idx_base;
for(int i = 0; i < m; ++i)
{
hcsr_row_ptr[i + 1] += hcsr_row_ptr[i];
}
}
std::vector<T> hx(n);
std::vector<T> hy_1(m);
std::vector<T> hy_2(m);
std::vector<T> hy_gold(m);
hipsparseInit<T>(hx, 1, n);
hipsparseInit<T>(hy_1, 1, m);
// copy vector is easy in STL; hy_gold = hx: save a copy in hy_gold which will be output of CPU
hy_2 = hy_1;
hy_gold = hy_1;
// allocate memory on device
auto dptr_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * (m + 1)), device_free};
auto dcol_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * nnz), device_free};
auto dval_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz), device_free};
auto dx_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * n), device_free};
auto dy_1_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
auto dy_2_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
auto d_alpha_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};
auto d_beta_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};
int* dptr = (int*)dptr_managed.get();
int* dcol = (int*)dcol_managed.get();
T* dval = (T*)dval_managed.get();
T* dx = (T*)dx_managed.get();
T* dy_1 = (T*)dy_1_managed.get();
T* dy_2 = (T*)dy_2_managed.get();
T* d_alpha = (T*)d_alpha_managed.get();
T* d_beta = (T*)d_beta_managed.get();
if(!dval || !dptr || !dcol || !dx || !dy_1 || !dy_2 || !d_alpha || !d_beta)
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
"!dval || !dptr || !dcol || !dx || "
"!dy_1 || !dy_2 || !d_alpha || !d_beta");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
// copy data from CPU to device
CHECK_HIP_ERROR(
hipMemcpy(dptr, hcsr_row_ptr.data(), sizeof(int) * (m + 1), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dcol, hcol_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dval, hval.data(), sizeof(T) * nnz, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dx, hx.data(), sizeof(T) * n, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dy_1, hy_1.data(), sizeof(T) * m, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_alpha, &h_alpha, sizeof(T), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_beta, &h_beta, sizeof(T), hipMemcpyHostToDevice));
// ELL width limit
int width_limit = (2 * nnz - 1) / m + 1;
// Limit ELL user width
if(part == HIPSPARSE_HYB_PARTITION_USER)
{
user_ell_width = user_ell_width * nnz / m;
user_ell_width = std::min(width_limit, user_ell_width);
}
// Convert CSR to HYB
status = hipsparseXcsr2hyb(handle, m, n, descr, dval, dptr, dcol, hyb, user_ell_width, part);
if(part == HIPSPARSE_HYB_PARTITION_MAX)
{
// Compute max ELL width
int ell_max_width = 0;
for(int i = 0; i < m; ++i)
{
ell_max_width = std::max(hcsr_row_ptr[i + 1] - hcsr_row_ptr[i], ell_max_width);
}
if(ell_max_width > width_limit)
{
verify_hipsparse_status_invalid_value(status, "ell_max_width > width_limit");
return HIPSPARSE_STATUS_SUCCESS;
}
}
if(argus.unit_check)
{
// Copy HYB structure to CPU
testhyb* dhyb = (testhyb*)hyb;
int ell_nnz = dhyb->ell_nnz;
int coo_nnz = dhyb->coo_nnz;
std::vector<int> hell_col(ell_nnz);
std::vector<T> hell_val(ell_nnz);
std::vector<int> hcoo_row(coo_nnz);
std::vector<int> hcoo_col(coo_nnz);
std::vector<T> hcoo_val(coo_nnz);
if(ell_nnz > 0)
{
CHECK_HIP_ERROR(hipMemcpy(
hell_col.data(), dhyb->ell_col_ind, sizeof(int) * ell_nnz, hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(
hell_val.data(), dhyb->ell_val, sizeof(T) * ell_nnz, hipMemcpyDeviceToHost));
}
if(coo_nnz > 0)
{
CHECK_HIP_ERROR(hipMemcpy(
hcoo_row.data(), dhyb->coo_row_ind, sizeof(int) * coo_nnz, hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(
hcoo_col.data(), dhyb->coo_col_ind, sizeof(int) * coo_nnz, hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(
hcoo_val.data(), dhyb->coo_val, sizeof(T) * coo_nnz, hipMemcpyDeviceToHost));
}
CHECK_HIP_ERROR(hipMemcpy(dy_2, hy_2.data(), sizeof(T) * m, hipMemcpyHostToDevice));
// ROCSPARSE pointer mode host
CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
CHECK_HIPSPARSE_ERROR(
hipsparseXhybmv(handle, transA, &h_alpha, descr, hyb, dx, &h_beta, dy_1));
// ROCSPARSE pointer mode device
CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
CHECK_HIPSPARSE_ERROR(
hipsparseXhybmv(handle, transA, d_alpha, descr, hyb, dx, d_beta, dy_2));
// copy output from device to CPU
CHECK_HIP_ERROR(hipMemcpy(hy_1.data(), dy_1, sizeof(T) * m, hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(hy_2.data(), dy_2, sizeof(T) * m, hipMemcpyDeviceToHost));
// CPU
// ELL part
if(ell_nnz > 0)
{
for(int i = 0; i < m; ++i)
{
T sum = zero;
for(int p = 0; p < dhyb->ell_width; ++p)
{
int idx = ELL_IND(i, p, m, dhyb->ell_width);
int col = hell_col[idx] - idx_base;
if(col >= 0 && col < n)
{
sum = sum + testing_mult(hell_val[idx], hx[col]);
}
else
{
break;
}
}
if(h_beta != zero)
{
hy_gold[i] = testing_mult(h_beta, hy_gold[i]) + testing_mult(h_alpha, sum);
}
else
{
hy_gold[i] = testing_mult(h_alpha, sum);
}
}
}
// COO part
if(coo_nnz > 0)
{
T coo_beta = (ell_nnz > 0) ? one : h_beta;
for(int i = 0; i < m; ++i)
{
hy_gold[i] = testing_mult(hy_gold[i], coo_beta);
}
for(int i = 0; i < coo_nnz; ++i)
{
int row = hcoo_row[i] - idx_base;
int col = hcoo_col[i] - idx_base;
hy_gold[row]
= hy_gold[row] + testing_mult(h_alpha, testing_mult(hcoo_val[i], hx[col]));
}
}
unit_check_near(1, m, 1, hy_gold.data(), hy_1.data());
unit_check_near(1, m, 1, hy_gold.data(), hy_2.data());
}
return HIPSPARSE_STATUS_SUCCESS;
}
#endif // TESTING_HYBMV_HPP
|