File: testing_hybmv.hpp

package info (click to toggle)
hipsparse 5.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,784 kB
  • sloc: cpp: 92,662; f90: 7,672; sh: 584; python: 557; makefile: 34; xml: 9
file content (469 lines) | stat: -rw-r--r-- 17,254 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/* ************************************************************************
 * Copyright (C) 2018-2019 Advanced Micro Devices, Inc. All rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * ************************************************************************ */

#pragma once
#ifndef TESTING_HYBMV_HPP
#define TESTING_HYBMV_HPP

#include "hipsparse.hpp"
#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"

#include <hipsparse.h>
#include <string>

using namespace hipsparse;
using namespace hipsparse_test;

#define ELL_IND_ROW(i, el, m, width) (el) * (m) + (i)
#define ELL_IND_EL(i, el, m, width) (el) + (width) * (i)
#define ELL_IND(i, el, m, width) ELL_IND_ROW(i, el, m, width)

struct testhyb
{
    int                     m;
    int                     n;
    hipsparseHybPartition_t partition;
    int                     ell_nnz;
    int                     ell_width;
    int*                    ell_col_ind;
    void*                   ell_val;
    int                     coo_nnz;
    int*                    coo_row_ind;
    int*                    coo_col_ind;
    void*                   coo_val;
};

template <typename T>
void testing_hybmv_bad_arg(void)
{
    int                  safe_size = 100;
    T                    alpha     = 0.6;
    T                    beta      = 0.2;
    hipsparseOperation_t transA    = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseStatus_t    status;

    std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
    hipsparseHandle_t              handle = unique_ptr_handle->handle;

    std::unique_ptr<descr_struct> unique_ptr_descr(new descr_struct);
    hipsparseMatDescr_t           descr = unique_ptr_descr->descr;

    std::unique_ptr<hyb_struct> unique_ptr_hyb(new hyb_struct);
    hipsparseHybMat_t           hyb = unique_ptr_hyb->hyb;

    auto dx_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
    auto dy_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};

    T* dx = (T*)dx_managed.get();
    T* dy = (T*)dy_managed.get();

    if(!dx || !dy)
    {
        PRINT_IF_HIP_ERROR(hipErrorOutOfMemory);
        return;
    }

    // testing for(nullptr == dx)
    {
        T* dx_null = nullptr;

        status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb, dx_null, &beta, dy);
        verify_hipsparse_status_invalid_pointer(status, "Error: dx is nullptr");
    }
    // testing for(nullptr == dy)
    {
        T* dy_null = nullptr;

        status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb, dx, &beta, dy_null);
        verify_hipsparse_status_invalid_pointer(status, "Error: dy is nullptr");
    }
    // testing for(nullptr == d_alpha)
    {
        T* d_alpha_null = nullptr;

        status = hipsparseXhybmv(handle, transA, d_alpha_null, descr, hyb, dx, &beta, dy);
        verify_hipsparse_status_invalid_pointer(status, "Error: alpha is nullptr");
    }
    // testing for(nullptr == d_beta)
    {
        T* d_beta_null = nullptr;

        status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb, dx, d_beta_null, dy);
        verify_hipsparse_status_invalid_pointer(status, "Error: beta is nullptr");
    }
    // testing for(nullptr == hyb)
    {
        hipsparseHybMat_t hyb_null = nullptr;

        status = hipsparseXhybmv(handle, transA, &alpha, descr, hyb_null, dx, &beta, dy);
        verify_hipsparse_status_invalid_pointer(status, "Error: descr is nullptr");
    }
    // testing for(nullptr == descr)
    {
        hipsparseMatDescr_t descr_null = nullptr;

        status = hipsparseXhybmv(handle, transA, &alpha, descr_null, hyb, dx, &beta, dy);
        verify_hipsparse_status_invalid_pointer(status, "Error: descr is nullptr");
    }
    // testing for(nullptr == handle)
    {
        hipsparseHandle_t handle_null = nullptr;

        status = hipsparseXhybmv(handle_null, transA, &alpha, descr, hyb, dx, &beta, dy);
        verify_hipsparse_status_invalid_handle(status);
    }
}

template <typename T>
hipsparseStatus_t testing_hybmv(Arguments argus)
{
    int                     safe_size      = 100;
    int                     m              = argus.M;
    int                     n              = argus.N;
    T                       h_alpha        = make_DataType<T>(argus.alpha);
    T                       h_beta         = make_DataType<T>(argus.beta);
    hipsparseOperation_t    transA         = argus.transA;
    hipsparseIndexBase_t    idx_base       = argus.idx_base;
    hipsparseHybPartition_t part           = argus.part;
    int                     user_ell_width = argus.ell_width;
    std::string             binfile        = "";
    std::string             filename       = "";
    hipsparseStatus_t       status;

    T zero = make_DataType<T>(0.0);
    T one  = make_DataType<T>(1.0);

    // When in testing mode, M == N == -99 indicates that we are testing with a real
    // matrix from cise.ufl.edu
    if(m == -99 && n == -99 && argus.timing == 0)
    {
        binfile = argus.filename;
        m = n = safe_size;
    }

    if(argus.timing == 1)
    {
        filename = argus.filename;
    }

    std::unique_ptr<handle_struct> test_handle(new handle_struct);
    hipsparseHandle_t              handle = test_handle->handle;

    std::unique_ptr<descr_struct> test_descr(new descr_struct);
    hipsparseMatDescr_t           descr = test_descr->descr;

    // Set matrix index base
    CHECK_HIPSPARSE_ERROR(hipsparseSetMatIndexBase(descr, idx_base));

    std::unique_ptr<hyb_struct> test_hyb(new hyb_struct);
    hipsparseHybMat_t           hyb = test_hyb->hyb;

    // Determine number of non-zero elements
    double scale = 0.02;
    if(m > 1000 || n > 1000)
    {
        scale = 2.0 / std::max(m, n);
    }
    int nnz = m * scale * n;

    // Argument sanity check before allocating invalid memory
    if(m <= 0 || n <= 0 || nnz <= 0)
    {
        auto dptr_managed
            = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
        auto dcol_managed
            = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
        auto dval_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
        auto dx_managed   = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};
        auto dy_managed   = hipsparse_unique_ptr{device_malloc(sizeof(T) * safe_size), device_free};

        int* dptr = (int*)dptr_managed.get();
        int* dcol = (int*)dcol_managed.get();
        T*   dval = (T*)dval_managed.get();
        T*   dx   = (T*)dx_managed.get();
        T*   dy   = (T*)dy_managed.get();

        if(!dval || !dptr || !dcol || !dx || !dy)
        {
            verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
                                            "!dptr || !dcol || !dval || !dx || !dy");
            return HIPSPARSE_STATUS_ALLOC_FAILED;
        }

        CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
        status
            = hipsparseXcsr2hyb(handle, m, n, descr, dval, dptr, dcol, hyb, user_ell_width, part);

        if(m < 0 || n < 0 || nnz < 0)
        {
            verify_hipsparse_status_invalid_size(status, "Error: m < 0 || n < 0 || nnz < 0");
        }

        // hybmv should be able to deal with m <= 0 || n <= 0 || nnz <= 0 even if csr2hyb fails
        // because hyb structures is allocated with n = m = 0 - so nothing should happen
        status = hipsparseXhybmv(handle, transA, &h_alpha, descr, hyb, dx, &h_beta, dy);
        verify_hipsparse_status_success(status, "m >= 0 && n >= 0 && nnz >= 0");

        return HIPSPARSE_STATUS_SUCCESS;
    }

    // Host structures
    std::vector<int> hcsr_row_ptr;
    std::vector<int> hcoo_row_ind;
    std::vector<int> hcol_ind;
    std::vector<T>   hval;

    // Initial Data on CPU
    srand(12345ULL);
    if(binfile != "")
    {
        if(read_bin_matrix(binfile.c_str(), m, n, nnz, hcsr_row_ptr, hcol_ind, hval, idx_base) != 0)
        {
            fprintf(stderr, "Cannot open [read] %s\n", binfile.c_str());
            return HIPSPARSE_STATUS_INTERNAL_ERROR;
        }
    }
    else if(argus.laplacian)
    {
        m = n = gen_2d_laplacian(argus.laplacian, hcsr_row_ptr, hcol_ind, hval, idx_base);
        nnz   = hcsr_row_ptr[m];
    }
    else
    {
        if(filename != "")
        {
            if(read_mtx_matrix(filename.c_str(), m, n, nnz, hcoo_row_ind, hcol_ind, hval, idx_base)
               != 0)
            {
                fprintf(stderr, "Cannot open [read] %s\n", filename.c_str());
                return HIPSPARSE_STATUS_INTERNAL_ERROR;
            }
        }
        else
        {
            gen_matrix_coo(m, n, nnz, hcoo_row_ind, hcol_ind, hval, idx_base);
        }

        // Convert COO to CSR
        hcsr_row_ptr.resize(m + 1, 0);
        for(int i = 0; i < nnz; ++i)
        {
            ++hcsr_row_ptr[hcoo_row_ind[i] + 1 - idx_base];
        }

        hcsr_row_ptr[0] = idx_base;
        for(int i = 0; i < m; ++i)
        {
            hcsr_row_ptr[i + 1] += hcsr_row_ptr[i];
        }
    }

    std::vector<T> hx(n);
    std::vector<T> hy_1(m);
    std::vector<T> hy_2(m);
    std::vector<T> hy_gold(m);

    hipsparseInit<T>(hx, 1, n);
    hipsparseInit<T>(hy_1, 1, m);

    // copy vector is easy in STL; hy_gold = hx: save a copy in hy_gold which will be output of CPU
    hy_2    = hy_1;
    hy_gold = hy_1;

    // allocate memory on device
    auto dptr_managed    = hipsparse_unique_ptr{device_malloc(sizeof(int) * (m + 1)), device_free};
    auto dcol_managed    = hipsparse_unique_ptr{device_malloc(sizeof(int) * nnz), device_free};
    auto dval_managed    = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz), device_free};
    auto dx_managed      = hipsparse_unique_ptr{device_malloc(sizeof(T) * n), device_free};
    auto dy_1_managed    = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
    auto dy_2_managed    = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
    auto d_alpha_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};
    auto d_beta_managed  = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};

    int* dptr    = (int*)dptr_managed.get();
    int* dcol    = (int*)dcol_managed.get();
    T*   dval    = (T*)dval_managed.get();
    T*   dx      = (T*)dx_managed.get();
    T*   dy_1    = (T*)dy_1_managed.get();
    T*   dy_2    = (T*)dy_2_managed.get();
    T*   d_alpha = (T*)d_alpha_managed.get();
    T*   d_beta  = (T*)d_beta_managed.get();

    if(!dval || !dptr || !dcol || !dx || !dy_1 || !dy_2 || !d_alpha || !d_beta)
    {
        verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
                                        "!dval || !dptr || !dcol || !dx || "
                                        "!dy_1 || !dy_2 || !d_alpha || !d_beta");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // copy data from CPU to device
    CHECK_HIP_ERROR(
        hipMemcpy(dptr, hcsr_row_ptr.data(), sizeof(int) * (m + 1), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dcol, hcol_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dval, hval.data(), sizeof(T) * nnz, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dx, hx.data(), sizeof(T) * n, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dy_1, hy_1.data(), sizeof(T) * m, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_alpha, &h_alpha, sizeof(T), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_beta, &h_beta, sizeof(T), hipMemcpyHostToDevice));

    // ELL width limit
    int width_limit = (2 * nnz - 1) / m + 1;

    // Limit ELL user width
    if(part == HIPSPARSE_HYB_PARTITION_USER)
    {
        user_ell_width = user_ell_width * nnz / m;
        user_ell_width = std::min(width_limit, user_ell_width);
    }

    // Convert CSR to HYB
    status = hipsparseXcsr2hyb(handle, m, n, descr, dval, dptr, dcol, hyb, user_ell_width, part);

    if(part == HIPSPARSE_HYB_PARTITION_MAX)
    {
        // Compute max ELL width
        int ell_max_width = 0;
        for(int i = 0; i < m; ++i)
        {
            ell_max_width = std::max(hcsr_row_ptr[i + 1] - hcsr_row_ptr[i], ell_max_width);
        }

        if(ell_max_width > width_limit)
        {
            verify_hipsparse_status_invalid_value(status, "ell_max_width > width_limit");
            return HIPSPARSE_STATUS_SUCCESS;
        }
    }

    if(argus.unit_check)
    {
        // Copy HYB structure to CPU
        testhyb* dhyb = (testhyb*)hyb;

        int ell_nnz = dhyb->ell_nnz;
        int coo_nnz = dhyb->coo_nnz;

        std::vector<int> hell_col(ell_nnz);
        std::vector<T>   hell_val(ell_nnz);
        std::vector<int> hcoo_row(coo_nnz);
        std::vector<int> hcoo_col(coo_nnz);
        std::vector<T>   hcoo_val(coo_nnz);

        if(ell_nnz > 0)
        {
            CHECK_HIP_ERROR(hipMemcpy(
                hell_col.data(), dhyb->ell_col_ind, sizeof(int) * ell_nnz, hipMemcpyDeviceToHost));
            CHECK_HIP_ERROR(hipMemcpy(
                hell_val.data(), dhyb->ell_val, sizeof(T) * ell_nnz, hipMemcpyDeviceToHost));
        }

        if(coo_nnz > 0)
        {
            CHECK_HIP_ERROR(hipMemcpy(
                hcoo_row.data(), dhyb->coo_row_ind, sizeof(int) * coo_nnz, hipMemcpyDeviceToHost));
            CHECK_HIP_ERROR(hipMemcpy(
                hcoo_col.data(), dhyb->coo_col_ind, sizeof(int) * coo_nnz, hipMemcpyDeviceToHost));
            CHECK_HIP_ERROR(hipMemcpy(
                hcoo_val.data(), dhyb->coo_val, sizeof(T) * coo_nnz, hipMemcpyDeviceToHost));
        }

        CHECK_HIP_ERROR(hipMemcpy(dy_2, hy_2.data(), sizeof(T) * m, hipMemcpyHostToDevice));

        // ROCSPARSE pointer mode host
        CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
        CHECK_HIPSPARSE_ERROR(
            hipsparseXhybmv(handle, transA, &h_alpha, descr, hyb, dx, &h_beta, dy_1));

        // ROCSPARSE pointer mode device
        CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
        CHECK_HIPSPARSE_ERROR(
            hipsparseXhybmv(handle, transA, d_alpha, descr, hyb, dx, d_beta, dy_2));

        // copy output from device to CPU
        CHECK_HIP_ERROR(hipMemcpy(hy_1.data(), dy_1, sizeof(T) * m, hipMemcpyDeviceToHost));
        CHECK_HIP_ERROR(hipMemcpy(hy_2.data(), dy_2, sizeof(T) * m, hipMemcpyDeviceToHost));

        // CPU
        // ELL part
        if(ell_nnz > 0)
        {
            for(int i = 0; i < m; ++i)
            {
                T sum = zero;
                for(int p = 0; p < dhyb->ell_width; ++p)
                {
                    int idx = ELL_IND(i, p, m, dhyb->ell_width);
                    int col = hell_col[idx] - idx_base;

                    if(col >= 0 && col < n)
                    {
                        sum = sum + testing_mult(hell_val[idx], hx[col]);
                    }
                    else
                    {
                        break;
                    }
                }

                if(h_beta != zero)
                {
                    hy_gold[i] = testing_mult(h_beta, hy_gold[i]) + testing_mult(h_alpha, sum);
                }
                else
                {
                    hy_gold[i] = testing_mult(h_alpha, sum);
                }
            }
        }

        // COO part
        if(coo_nnz > 0)
        {
            T coo_beta = (ell_nnz > 0) ? one : h_beta;

            for(int i = 0; i < m; ++i)
            {
                hy_gold[i] = testing_mult(hy_gold[i], coo_beta);
            }

            for(int i = 0; i < coo_nnz; ++i)
            {
                int row = hcoo_row[i] - idx_base;
                int col = hcoo_col[i] - idx_base;

                hy_gold[row]
                    = hy_gold[row] + testing_mult(h_alpha, testing_mult(hcoo_val[i], hx[col]));
            }
        }

        unit_check_near(1, m, 1, hy_gold.data(), hy_1.data());
        unit_check_near(1, m, 1, hy_gold.data(), hy_2.data());
    }

    return HIPSPARSE_STATUS_SUCCESS;
}

#endif // TESTING_HYBMV_HPP