File: testing_sddmm_csr.hpp

package info (click to toggle)
hipsparse 5.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,784 kB
  • sloc: cpp: 92,662; f90: 7,672; sh: 584; python: 557; makefile: 34; xml: 9
file content (368 lines) | stat: -rw-r--r-- 15,807 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/* ************************************************************************
 * Copyright (C) 2021 Advanced Micro Devices, Inc. All rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * ************************************************************************ */

#pragma once
#ifndef TESTING_SDDMM_CSR_HPP
#define TESTING_SDDMM_CSR_HPP

#include "hipsparse.hpp"
#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"

#include <hipsparse.h>
#include <string>
#include <typeinfo>

using namespace hipsparse;
using namespace hipsparse_test;

void testing_sddmm_csr_bad_arg(void)
{
#ifdef __HIP_PLATFORM_NVIDIA__
    // do not test for bad args
    return;
#endif

#if(!defined(CUDART_VERSION) || CUDART_VERSION >= 11022)

    int32_t              n         = 100;
    int32_t              m         = 100;
    int32_t              k         = 100;
    int64_t              nnz       = 100;
    int32_t              safe_size = 100;
    float                alpha     = 0.6;
    float                beta      = 0.2;
    hipsparseOperation_t transA    = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseOperation_t transB    = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseOrder_t     order     = HIPSPARSE_ORDER_COL;
    hipsparseIndexBase_t idxBase   = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseIndexType_t idxTypeI  = HIPSPARSE_INDEX_64I;
    hipsparseIndexType_t idxTypeJ  = HIPSPARSE_INDEX_32I;
    hipDataType          dataType  = HIP_R_32F;
    hipsparseSDDMMAlg_t  alg       = HIPSPARSE_SDDMM_ALG_DEFAULT;

    std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
    hipsparseHandle_t              handle = unique_ptr_handle->handle;

    auto dptr_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int64_t) * safe_size), device_free};
    auto dcol_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int32_t) * safe_size), device_free};
    auto dval_managed = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
    auto dB_managed   = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
    auto dA_managed   = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
    auto dbuf_managed = hipsparse_unique_ptr{device_malloc(sizeof(char) * safe_size), device_free};

    int64_t* dptr = (int64_t*)dptr_managed.get();
    int32_t* dcol = (int32_t*)dcol_managed.get();
    float*   dval = (float*)dval_managed.get();
    float*   dB   = (float*)dB_managed.get();
    float*   dA   = (float*)dA_managed.get();
    void*    dbuf = (void*)dbuf_managed.get();

    if(!dval || !dptr || !dcol || !dB || !dA || !dbuf)
    {
        PRINT_IF_HIP_ERROR(hipErrorOutOfMemory);
        return;
    }

    // SDDMM structures
    hipsparseDnMatDescr_t A, B;
    hipsparseSpMatDescr_t C;

    size_t bsize;

    // Create SDDMM structures
    verify_hipsparse_status_success(hipsparseCreateDnMat(&A, m, k, m, dA, dataType, order),
                                    "success");
    verify_hipsparse_status_success(hipsparseCreateDnMat(&B, k, n, k, dB, dataType, order),
                                    "success");
    verify_hipsparse_status_success(
        hipsparseCreateCsr(&C, m, n, nnz, dptr, dcol, dval, idxTypeI, idxTypeJ, idxBase, dataType),
        "success");

    // SDDMM buffer
    verify_hipsparse_status_invalid_handle(hipsparseSDDMM_bufferSize(
        nullptr, transA, transB, &alpha, A, B, &beta, C, dataType, alg, &bsize));
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_bufferSize(
            handle, transA, transB, nullptr, A, B, &beta, C, dataType, alg, &bsize),
        "Error: alpha is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_bufferSize(
            handle, transA, transB, &alpha, nullptr, B, &beta, C, dataType, alg, &bsize),
        "Error: A is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_bufferSize(
            handle, transA, transB, &alpha, A, nullptr, &beta, C, dataType, alg, &bsize),
        "Error: B is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_bufferSize(
            handle, transA, transB, &alpha, A, B, nullptr, C, dataType, alg, &bsize),
        "Error: beta is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_bufferSize(
            handle, transA, transB, &alpha, A, B, &beta, nullptr, dataType, alg, &bsize),
        "Error: C is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_bufferSize(
            handle, transA, transB, &alpha, A, B, &beta, C, dataType, alg, nullptr),
        "Error: bsize is nullptr");

    // SDDMM
    verify_hipsparse_status_invalid_handle(hipsparseSDDMM_preprocess(
        nullptr, transA, transB, &alpha, A, B, &beta, C, dataType, alg, dbuf));
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_preprocess(
            handle, transA, transB, nullptr, A, B, &beta, C, dataType, alg, dbuf),
        "Error: alpha is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_preprocess(
            handle, transA, transB, &alpha, nullptr, B, &beta, C, dataType, alg, dbuf),
        "Error: A is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_preprocess(
            handle, transA, transB, &alpha, A, nullptr, &beta, C, dataType, alg, dbuf),
        "Error: B is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_preprocess(
            handle, transA, transB, &alpha, A, B, nullptr, C, dataType, alg, dbuf),
        "Error: beta is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_preprocess(
            handle, transA, transB, &alpha, A, B, &beta, nullptr, dataType, alg, dbuf),
        "Error: C is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM_preprocess(
            handle, transA, transB, &alpha, A, B, &beta, nullptr, dataType, alg, nullptr),
        "Error: dbuf is nullptr");

    // SDDMM
    verify_hipsparse_status_invalid_handle(
        hipsparseSDDMM(nullptr, transA, transB, &alpha, A, B, &beta, C, dataType, alg, dbuf));
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM(handle, transA, transB, nullptr, A, B, &beta, C, dataType, alg, dbuf),
        "Error: alpha is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM(handle, transA, transB, &alpha, nullptr, B, &beta, C, dataType, alg, dbuf),
        "Error: A is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM(handle, transA, transB, &alpha, A, nullptr, &beta, C, dataType, alg, dbuf),
        "Error: B is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM(handle, transA, transB, &alpha, A, B, nullptr, C, dataType, alg, dbuf),
        "Error: beta is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM(handle, transA, transB, &alpha, A, B, &beta, nullptr, dataType, alg, dbuf),
        "Error: C is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSDDMM(
            handle, transA, transB, &alpha, A, B, &beta, nullptr, dataType, alg, nullptr),
        "Error: dbuf is nullptr");

    // Destruct
    verify_hipsparse_status_success(hipsparseDestroyDnMat(A), "success");
    verify_hipsparse_status_success(hipsparseDestroyDnMat(B), "success");
    verify_hipsparse_status_success(hipsparseDestroySpMat(C), "success");

#endif
}

template <typename I, typename J, typename T>
hipsparseStatus_t testing_sddmm_csr()
{
#if(!defined(CUDART_VERSION) || CUDART_VERSION >= 11022)

    T                    h_alpha  = make_DataType<T>(2.0);
    T                    h_beta   = make_DataType<T>(1.0);
    hipsparseOperation_t transA   = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseOperation_t transB   = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseOrder_t     order    = HIPSPARSE_ORDER_COL;
    hipsparseIndexBase_t idx_base = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseSDDMMAlg_t  alg      = HIPSPARSE_SDDMM_ALG_DEFAULT;

    // Matrices are stored at the same path in matrices directory
    std::string filename = get_filename("nos3.bin");

    // Index and data type
    hipsparseIndexType_t typeI
        = (typeid(I) == typeid(int32_t)) ? HIPSPARSE_INDEX_32I : HIPSPARSE_INDEX_64I;
    hipsparseIndexType_t typeJ
        = (typeid(J) == typeid(int32_t)) ? HIPSPARSE_INDEX_32I : HIPSPARSE_INDEX_64I;
    hipDataType typeT = (typeid(T) == typeid(float))
                            ? HIP_R_32F
                            : ((typeid(T) == typeid(double))
                                   ? HIP_R_64F
                                   : ((typeid(T) == typeid(hipComplex) ? HIP_C_32F : HIP_C_64F)));

    // hipSPARSE handle
    std::unique_ptr<handle_struct> test_handle(new handle_struct);
    hipsparseHandle_t              handle = test_handle->handle;

    // Host structures
    std::vector<I> hcsr_row_ptr;
    std::vector<J> hcsr_col_ind;
    std::vector<T> hcsr_val;

    // Initial Data on CPU
    srand(12345ULL);

    J m;
    J n;
    I nnz;

    if(read_bin_matrix(filename.c_str(), m, n, nnz, hcsr_row_ptr, hcsr_col_ind, hcsr_val, idx_base)
       != 0)
    {
        fprintf(stderr, "Cannot open [read] %s\n", filename.c_str());
        return HIPSPARSE_STATUS_INTERNAL_ERROR;
    }

    J k   = 5;
    J lda = m;
    J ldb = k;

    std::vector<T> hA(m * k);
    std::vector<T> hB(k * n);
    std::vector<T> hval1(nnz);
    std::vector<T> hval2(nnz);

    hipsparseInit<T>(hA, m, k);
    hipsparseInit<T>(hB, k, n);

    // allocate memory on device
    auto dptr_managed  = hipsparse_unique_ptr{device_malloc(sizeof(I) * (m + 1)), device_free};
    auto dcol_managed  = hipsparse_unique_ptr{device_malloc(sizeof(J) * nnz), device_free};
    auto dval1_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz), device_free};
    auto dval2_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz), device_free};

    auto dA_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * m * k), device_free};
    auto dB_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * k * n), device_free};

    auto d_alpha_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};
    auto d_beta_managed  = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};

    I* dptr  = (I*)dptr_managed.get();
    J* dcol  = (J*)dcol_managed.get();
    T* dval1 = (T*)dval1_managed.get();
    T* dval2 = (T*)dval2_managed.get();

    T* dA      = (T*)dA_managed.get();
    T* dB      = (T*)dB_managed.get();
    T* d_alpha = (T*)d_alpha_managed.get();
    T* d_beta  = (T*)d_beta_managed.get();

    if(!dval1 || !dval2 || !dptr || !dcol || !dB || !dA || !d_alpha || !d_beta)
    {
        verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
                                        "!dval1 || !dval2 || !dptr || !dcol || !dA || "
                                        "!dB || !d_alpha || !d_beta");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // copy data from CPU to device
    CHECK_HIP_ERROR(
        hipMemcpy(dptr, hcsr_row_ptr.data(), sizeof(I) * (m + 1), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dcol, hcsr_col_ind.data(), sizeof(J) * nnz, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dval1, hcsr_val.data(), sizeof(T) * nnz, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dval2, hcsr_val.data(), sizeof(T) * nnz, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dA, hA.data(), sizeof(T) * m * k, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dB, hB.data(), sizeof(T) * k * n, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_alpha, &h_alpha, sizeof(T), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_beta, &h_beta, sizeof(T), hipMemcpyHostToDevice));

    // Create matrices
    hipsparseSpMatDescr_t C1, C2;
    CHECK_HIPSPARSE_ERROR(
        hipsparseCreateCsr(&C1, m, n, nnz, dptr, dcol, dval1, typeI, typeJ, idx_base, typeT));
    CHECK_HIPSPARSE_ERROR(
        hipsparseCreateCsr(&C2, m, n, nnz, dptr, dcol, dval2, typeI, typeJ, idx_base, typeT));

    // Create dense matrices
    hipsparseDnMatDescr_t A, B;
    CHECK_HIPSPARSE_ERROR(hipsparseCreateDnMat(&A, m, k, lda, dA, typeT, order));
    CHECK_HIPSPARSE_ERROR(hipsparseCreateDnMat(&B, k, n, ldb, dB, typeT, order));

    // Query SDDMM buffer
    size_t bufferSize;
    CHECK_HIPSPARSE_ERROR(hipsparseSDDMM_bufferSize(
        handle, transA, transB, &h_alpha, A, B, &h_beta, C1, typeT, alg, &bufferSize));

    void* buffer;
    CHECK_HIP_ERROR(hipMalloc(&buffer, bufferSize));

    // ROCSPARSE pointer mode host
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
    CHECK_HIPSPARSE_ERROR(hipsparseSDDMM_preprocess(
        handle, transA, transB, &h_alpha, A, B, &h_beta, C1, typeT, alg, buffer));
    CHECK_HIPSPARSE_ERROR(
        hipsparseSDDMM(handle, transA, transB, &h_alpha, A, B, &h_beta, C1, typeT, alg, buffer));

    // ROCSPARSE pointer mode device
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
    CHECK_HIPSPARSE_ERROR(hipsparseSDDMM_preprocess(
        handle, transA, transB, d_alpha, A, B, d_beta, C2, typeT, alg, buffer));
    CHECK_HIPSPARSE_ERROR(
        hipsparseSDDMM(handle, transA, transB, d_alpha, A, B, d_beta, C2, typeT, alg, buffer));

    // copy output from device to CPU.
    CHECK_HIP_ERROR(hipMemcpy(hval1.data(), dval1, sizeof(T) * nnz, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hval2.data(), dval2, sizeof(T) * nnz, hipMemcpyDeviceToHost));

    // CPU
    const J incx = lda;
    const J incy = 1;

    for(J i = 0; i < m; ++i)
    {
        for(I at = hcsr_row_ptr[i] - idx_base; at < hcsr_row_ptr[i + 1] - idx_base; ++at)
        {
            J        j   = hcsr_col_ind[at] - idx_base;
            const T* x   = &hA[i];
            const T* y   = &hB[ldb * j];
            T        sum = make_DataType<T>(0.0);
            for(J k_ = 0; k_ < k; ++k_)
            {
                sum = testing_fma(x[incx * k_], y[incy * k_], sum);
            }
            hcsr_val[at] = testing_mult(hcsr_val[at], h_beta) + testing_mult(h_alpha, sum);
        }
    }

    unit_check_near(1, nnz, 1, hval1.data(), hcsr_val.data());
    unit_check_near(1, nnz, 1, hval2.data(), hcsr_val.data());

    // free.
    CHECK_HIP_ERROR(hipFree(buffer));
    CHECK_HIPSPARSE_ERROR(hipsparseDestroySpMat(C1));
    CHECK_HIPSPARSE_ERROR(hipsparseDestroySpMat(C2));
    CHECK_HIPSPARSE_ERROR(hipsparseDestroyDnMat(A));
    CHECK_HIPSPARSE_ERROR(hipsparseDestroyDnMat(B));

#endif

    return HIPSPARSE_STATUS_SUCCESS;
}

#endif // TESTING_SDDMM_CSR_HPP