File: testing_spgemmreuse_csr.hpp

package info (click to toggle)
hipsparse 5.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,784 kB
  • sloc: cpp: 92,662; f90: 7,672; sh: 584; python: 557; makefile: 34; xml: 9
file content (611 lines) | stat: -rw-r--r-- 28,574 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/* ************************************************************************
 * Copyright (C) 2021 Advanced Micro Devices, Inc. All rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * ************************************************************************ */

#pragma once
#ifndef TESTING_SPGEMMREUSE_CSR_HPP
#define TESTING_SPGEMMREUSE_CSR_HPP

#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"

#include <hipsparse.h>
#include <string>
#include <typeinfo>

using namespace hipsparse_test;

void testing_spgemmreuse_csr_bad_arg(void)
{
#if(!defined(CUDART_VERSION) || CUDART_VERSION >= 11031)
    int64_t              m         = 100;
    int64_t              n         = 100;
    int64_t              k         = 100;
    int64_t              nnz_A     = 100;
    int64_t              nnz_B     = 100;
    int64_t              nnz_C     = 100;
    int64_t              safe_size = 100;
    float                alpha     = 0.6;
    float                beta      = 0.2;
    hipsparseOperation_t transA    = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseOperation_t transB    = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseIndexBase_t idxBaseA  = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseIndexBase_t idxBaseB  = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseIndexBase_t idxBaseC  = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseIndexType_t idxType   = HIPSPARSE_INDEX_32I;
    hipDataType          dataType  = HIP_R_32F;
    hipsparseSpGEMMAlg_t alg       = HIPSPARSE_SPGEMM_DEFAULT;

    std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
    hipsparseHandle_t              handle = unique_ptr_handle->handle;

    std::unique_ptr<spgemm_struct> unique_ptr_descr(new spgemm_struct);
    hipsparseSpGEMMDescr_t         descr = unique_ptr_descr->descr;
    auto                           dcsr_row_ptr_A_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
    auto dcsr_col_ind_A_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
    auto dcsr_val_A_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
    auto dcsr_row_ptr_B_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
    auto dcsr_col_ind_B_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
    auto dcsr_val_B_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
    auto dcsr_row_ptr_C_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
    auto dcsr_col_ind_C_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
    auto dcsr_val_C_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
    auto dbuf_managed = hipsparse_unique_ptr{device_malloc(sizeof(char) * safe_size), device_free};

    int*   dcsr_row_ptr_A = (int*)dcsr_row_ptr_A_managed.get();
    int*   dcsr_col_ind_A = (int*)dcsr_col_ind_A_managed.get();
    float* dcsr_val_A     = (float*)dcsr_val_A_managed.get();
    int*   dcsr_row_ptr_B = (int*)dcsr_row_ptr_B_managed.get();
    int*   dcsr_col_ind_B = (int*)dcsr_col_ind_B_managed.get();
    float* dcsr_val_B     = (float*)dcsr_val_B_managed.get();
    int*   dcsr_row_ptr_C = (int*)dcsr_row_ptr_C_managed.get();
    int*   dcsr_col_ind_C = (int*)dcsr_col_ind_C_managed.get();
    float* dcsr_val_C     = (float*)dcsr_val_C_managed.get();
    void*  dbuf           = (void*)dbuf_managed.get();

    if(!dcsr_row_ptr_A || !dcsr_col_ind_A || !dcsr_val_A || !dcsr_row_ptr_B || !dcsr_col_ind_B
       || !dcsr_val_B || !dcsr_row_ptr_C || !dcsr_col_ind_C || !dcsr_val_C || !dbuf)
    {
        PRINT_IF_HIP_ERROR(hipErrorOutOfMemory);
        return;
    }

    // SpGEMM structures
    hipsparseSpMatDescr_t A, B, C;

    size_t bufferSize;

    // Create SpGEMM structures
    verify_hipsparse_status_success(hipsparseCreateCsr(&A,
                                                       m,
                                                       k,
                                                       nnz_A,
                                                       dcsr_row_ptr_A,
                                                       dcsr_col_ind_A,
                                                       dcsr_val_A,
                                                       idxType,
                                                       idxType,
                                                       idxBaseA,
                                                       dataType),
                                    "success");
    verify_hipsparse_status_success(hipsparseCreateCsr(&B,
                                                       k,
                                                       n,
                                                       nnz_B,
                                                       dcsr_row_ptr_B,
                                                       dcsr_col_ind_B,
                                                       dcsr_val_B,
                                                       idxType,
                                                       idxType,
                                                       idxBaseB,
                                                       dataType),
                                    "success");
    verify_hipsparse_status_success(hipsparseCreateCsr(&C,
                                                       m,
                                                       n,
                                                       nnz_C,
                                                       dcsr_row_ptr_C,
                                                       dcsr_col_ind_C,
                                                       dcsr_val_C,
                                                       idxType,
                                                       idxType,
                                                       idxBaseC,
                                                       dataType),
                                    "success");

    // SpGEMM work estimation
    verify_hipsparse_status_invalid_handle(hipsparseSpGEMMreuse_workEstimation(
        nullptr, transA, transB, A, B, C, alg, descr, &bufferSize, nullptr));

    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_workEstimation(
            handle, transA, transB, nullptr, B, C, alg, descr, &bufferSize, nullptr),
        "Error: A is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_workEstimation(
            handle, transA, transB, A, nullptr, C, alg, descr, &bufferSize, nullptr),
        "Error: B is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_workEstimation(
            handle, transA, transB, A, B, nullptr, alg, descr, &bufferSize, nullptr),
        "Error: C is nullptr");

    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_workEstimation(
            handle, transA, transB, A, B, C, alg, descr, nullptr, nullptr),
        "Error: bufferSize is nullptr");

    // SpGEMM compute
    verify_hipsparse_status_invalid_handle(hipsparseSpGEMMreuse_compute(
        nullptr, transA, transB, &alpha, A, B, &beta, C, dataType, alg, descr));
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_compute(
            handle, transA, transB, nullptr, A, B, &beta, C, dataType, alg, descr),
        "Error: alpha is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_compute(
            handle, transA, transB, &alpha, nullptr, B, &beta, C, dataType, alg, descr),
        "Error: A is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_compute(
            handle, transA, transB, &alpha, A, nullptr, &beta, C, dataType, alg, descr),
        "Error: B is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_compute(
            handle, transA, transB, &alpha, A, B, nullptr, C, dataType, alg, descr),
        "Error: beta is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_compute(
            handle, transA, transB, &alpha, A, B, &beta, nullptr, dataType, alg, descr),
        "Error: C is nullptr");

    // SpGEMMreuse copy
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_copy(
            handle, transA, transB, nullptr, B, C, alg, descr, &bufferSize, nullptr),
        "Error: A is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_copy(
            handle, transA, transB, A, nullptr, C, alg, descr, &bufferSize, nullptr),
        "Error: B is nullptr");
    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_copy(
            handle, transA, transB, A, B, nullptr, alg, descr, &bufferSize, nullptr),
        "Error: C is nullptr");

    verify_hipsparse_status_invalid_pointer(
        hipsparseSpGEMMreuse_copy(handle, transA, transB, A, B, C, alg, descr, nullptr, nullptr),
        "Error: bufferSize is nullptr");

    // Destruct
    verify_hipsparse_status_success(hipsparseDestroySpMat(A), "success");
    verify_hipsparse_status_success(hipsparseDestroySpMat(B), "success");
    verify_hipsparse_status_success(hipsparseDestroySpMat(C), "success");
#endif
}

template <typename I, typename J, typename T>
hipsparseStatus_t testing_spgemmreuse_csr(void)
{

#if(!defined(CUDART_VERSION) || CUDART_VERSION >= 11031)
    T                    h_alpha  = make_DataType<T>(2.0);
    T                    h_beta   = make_DataType<T>(0.0);
    hipsparseOperation_t transA   = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseOperation_t transB   = HIPSPARSE_OPERATION_NON_TRANSPOSE;
    hipsparseIndexBase_t idxBaseA = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseIndexBase_t idxBaseB = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseIndexBase_t idxBaseC = HIPSPARSE_INDEX_BASE_ZERO;
    hipsparseSpGEMMAlg_t alg      = HIPSPARSE_SPGEMM_DEFAULT;

    // Matrices are stored at the same path in matrices directory
    std::string filename = get_filename("nos6.bin");

    // Index and data type
    hipsparseIndexType_t typeI
        = (typeid(I) == typeid(int32_t)) ? HIPSPARSE_INDEX_32I : HIPSPARSE_INDEX_64I;
    hipsparseIndexType_t typeJ
        = (typeid(J) == typeid(int32_t)) ? HIPSPARSE_INDEX_32I : HIPSPARSE_INDEX_64I;
    hipDataType typeT = (typeid(T) == typeid(float))
                            ? HIP_R_32F
                            : ((typeid(T) == typeid(double))
                                   ? HIP_R_64F
                                   : ((typeid(T) == typeid(hipComplex) ? HIP_C_32F : HIP_C_64F)));

    // hipSPARSE handles
    std::unique_ptr<handle_struct> test_handle(new handle_struct);
    hipsparseHandle_t              handle = test_handle->handle;

    std::unique_ptr<spgemm_struct> unique_ptr_descr(new spgemm_struct);
    hipsparseSpGEMMDescr_t         descr = unique_ptr_descr->descr;

    // Host structures
    std::vector<I> hcsr_row_ptr_A;
    std::vector<J> hcsr_col_ind_A;
    std::vector<T> hcsr_val_A;

    // Initial Data on CPU
    srand(12345ULL);

    // Some sparse matrix A
    J m;
    J k;
    I nnz_A;

    if(read_bin_matrix(
           filename.c_str(), m, k, nnz_A, hcsr_row_ptr_A, hcsr_col_ind_A, hcsr_val_A, idxBaseA)
       != 0)
    {
        fprintf(stderr, "Cannot open [read] %s\n", filename.c_str());
        return HIPSPARSE_STATUS_INTERNAL_ERROR;
    }

    // Sparse matrix B as the transpose of A
    J n     = m;
    I nnz_B = nnz_A;

    std::vector<I> hcsr_row_ptr_B(k + 1);
    std::vector<J> hcsr_col_ind_B(nnz_B);
    std::vector<T> hcsr_val_B(nnz_B);

    transpose_csr(m,
                  k,
                  nnz_A,
                  hcsr_row_ptr_A.data(),
                  hcsr_col_ind_A.data(),
                  hcsr_val_A.data(),
                  hcsr_row_ptr_B.data(),
                  hcsr_col_ind_B.data(),
                  hcsr_val_B.data(),
                  idxBaseA,
                  idxBaseB);

    // allocate memory on device
    auto dcsr_row_ptr_A_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(I) * (m + 1)), device_free};
    auto dcsr_col_ind_A_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(J) * nnz_A), device_free};
    auto dcsr_val_A_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz_A), device_free};
    auto dcsr_row_ptr_B_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(I) * (k + 1)), device_free};
    auto dcsr_col_ind_B_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(J) * nnz_B), device_free};
    auto dcsr_val_B_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz_B), device_free};
    auto dcsr_row_ptr_C_1_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(I) * (m + 1)), device_free};
    auto dcsr_row_ptr_C_2_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(I) * (m + 1)), device_free};
    auto d_alpha_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};
    auto d_beta_managed  = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};

    I* dcsr_row_ptr_A   = (I*)dcsr_row_ptr_A_managed.get();
    J* dcsr_col_ind_A   = (J*)dcsr_col_ind_A_managed.get();
    T* dcsr_val_A       = (T*)dcsr_val_A_managed.get();
    I* dcsr_row_ptr_B   = (I*)dcsr_row_ptr_B_managed.get();
    J* dcsr_col_ind_B   = (J*)dcsr_col_ind_B_managed.get();
    T* dcsr_val_B       = (T*)dcsr_val_B_managed.get();
    I* dcsr_row_ptr_C_1 = (I*)dcsr_row_ptr_C_1_managed.get();
    I* dcsr_row_ptr_C_2 = (I*)dcsr_row_ptr_C_2_managed.get();
    T* d_alpha          = (T*)d_alpha_managed.get();
    T* d_beta           = (T*)d_beta_managed.get();

    if(!dcsr_row_ptr_A || !dcsr_col_ind_A || !dcsr_val_A || !dcsr_row_ptr_B || !dcsr_col_ind_B
       || !dcsr_val_B || !dcsr_row_ptr_C_1 || !dcsr_row_ptr_C_2 || !d_alpha || !d_beta)
    {
        verify_hipsparse_status_success(
            HIPSPARSE_STATUS_ALLOC_FAILED,
            "!dcsr_row_ptr_A || !dcsr_col_ind_A || !dcsr_val_A || "
            "!dcsr_row_ptr_B || !dcsr_col_ind_B || !dcsr_val_B || "
            "!dcsr_row_ptr_C_1 || !dcsr_row_ptr_C_2 || !d_alpha || !d_beta");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // copy data from CPU to device
    CHECK_HIP_ERROR(hipMemcpy(
        dcsr_row_ptr_A, hcsr_row_ptr_A.data(), sizeof(I) * (m + 1), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(
        hipMemcpy(dcsr_col_ind_A, hcsr_col_ind_A.data(), sizeof(J) * nnz_A, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(
        hipMemcpy(dcsr_val_A, hcsr_val_A.data(), sizeof(T) * nnz_A, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(
        dcsr_row_ptr_B, hcsr_row_ptr_B.data(), sizeof(I) * (k + 1), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(
        hipMemcpy(dcsr_col_ind_B, hcsr_col_ind_B.data(), sizeof(J) * nnz_B, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(
        hipMemcpy(dcsr_val_B, hcsr_val_B.data(), sizeof(T) * nnz_B, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_alpha, &h_alpha, sizeof(T), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_beta, &h_beta, sizeof(T), hipMemcpyHostToDevice));

    // Create matrices
    hipsparseSpMatDescr_t A, B, C1, C2;
    CHECK_HIPSPARSE_ERROR(hipsparseCreateCsr(&A,
                                             m,
                                             k,
                                             nnz_A,
                                             dcsr_row_ptr_A,
                                             dcsr_col_ind_A,
                                             dcsr_val_A,
                                             typeI,
                                             typeJ,
                                             idxBaseA,
                                             typeT));
    CHECK_HIPSPARSE_ERROR(hipsparseCreateCsr(&B,
                                             k,
                                             n,
                                             nnz_B,
                                             dcsr_row_ptr_B,
                                             dcsr_col_ind_B,
                                             dcsr_val_B,
                                             typeI,
                                             typeJ,
                                             idxBaseB,
                                             typeT));
    CHECK_HIPSPARSE_ERROR(hipsparseCreateCsr(
        &C1, m, n, 0, dcsr_row_ptr_C_1, nullptr, nullptr, typeI, typeJ, idxBaseC, typeT));
    // Query SpGEMM work estimation buffer
    size_t bufferSize1;
    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_workEstimation(
        handle, transA, transB, A, B, C1, alg, descr, &bufferSize1, nullptr));

    auto  externalBuffer1_managed = hipsparse_unique_ptr{device_malloc(bufferSize1), device_free};
    void* externalBuffer1         = (void*)externalBuffer1_managed.get();

    // SpGEMMreuse work estimation
    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_workEstimation(
        handle, transA, transB, A, B, C1, alg, descr, &bufferSize1, externalBuffer1));
    // Query SpGEMM_nnz

    // SpGEMM work estimation
    size_t bufferSize2, bufferSize3, bufferSize4, bufferSize5;

    void *externalBuffer2 = nullptr, *externalBuffer3 = nullptr, *externalBuffer4 = nullptr,
         *externalBuffer5 = nullptr;

    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_nnz(handle,
                                                   transA,
                                                   transB,
                                                   A,
                                                   B,
                                                   C1,
                                                   alg,
                                                   descr,
                                                   &bufferSize2,
                                                   externalBuffer2,
                                                   &bufferSize3,
                                                   externalBuffer3,
                                                   &bufferSize4,
                                                   externalBuffer4));

    auto externalBuffer2_managed = hipsparse_unique_ptr{device_malloc(bufferSize2), device_free};
    externalBuffer2              = (void*)externalBuffer2_managed.get();
    auto externalBuffer3_managed = hipsparse_unique_ptr{device_malloc(bufferSize3), device_free};
    externalBuffer3              = (void*)externalBuffer3_managed.get();
    auto externalBuffer4_managed = hipsparse_unique_ptr{device_malloc(bufferSize4), device_free};
    externalBuffer4              = (void*)externalBuffer4_managed.get();

    CHECK_HIP_ERROR(hipMalloc(&externalBuffer2, bufferSize2));
    CHECK_HIP_ERROR(hipMalloc(&externalBuffer3, bufferSize3));
    CHECK_HIP_ERROR(hipMalloc(&externalBuffer4, bufferSize4));

    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_nnz(handle,
                                                   transA,
                                                   transB,
                                                   A,
                                                   B,
                                                   C1,
                                                   alg,
                                                   descr,
                                                   &bufferSize2,
                                                   externalBuffer2,
                                                   &bufferSize3,
                                                   externalBuffer3,
                                                   &bufferSize4,
                                                   externalBuffer4));

    // We can already free buffer1
    externalBuffer1_managed.reset(nullptr);
    externalBuffer1 = nullptr;

    externalBuffer2_managed.reset(nullptr);
    externalBuffer2 = nullptr;

    // Get nnz of C
    int64_t rows_C, cols_C, nnz_C_1, nnz_C_2;
    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
    CHECK_HIPSPARSE_ERROR(hipsparseSpMatGetSize(C1, &rows_C, &cols_C, &nnz_C_1));
    nnz_C_2 = nnz_C_1;

    // Allocate C
    auto dcsr_col_ind_C_1_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(J) * nnz_C_1), device_free};
    auto dcsr_val_C_1_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz_C_1), device_free};
    auto dcsr_col_ind_C_2_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(J) * nnz_C_2), device_free};
    auto dcsr_val_C_2_managed
        = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz_C_2), device_free};

    J* dcsr_col_ind_C_1 = (J*)dcsr_col_ind_C_1_managed.get();
    T* dcsr_val_C_1     = (T*)dcsr_val_C_1_managed.get();
    J* dcsr_col_ind_C_2 = (J*)dcsr_col_ind_C_2_managed.get();
    T* dcsr_val_C_2     = (T*)dcsr_val_C_2_managed.get();
    if(!dcsr_col_ind_C_1 || !dcsr_val_C_1 || !dcsr_col_ind_C_2 || !dcsr_val_C_2)
    {
        verify_hipsparse_status_success(
            HIPSPARSE_STATUS_ALLOC_FAILED,
            "!dcsr_col_ind_C_1 || !dcsr_val_C_1 || !dcsr_col_ind_C_2 || !dcsr_val_C_2");
        return HIPSPARSE_STATUS_ALLOC_FAILED;
    }

    // Set C pointers
    CHECK_HIPSPARSE_ERROR(
        hipsparseCsrSetPointers(C1, dcsr_row_ptr_C_1, dcsr_col_ind_C_1, dcsr_val_C_1));

    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_copy(
        handle, transA, transB, A, B, C1, alg, descr, &bufferSize5, externalBuffer5));

    auto externalBuffer5_managed = hipsparse_unique_ptr{device_malloc(bufferSize5), device_free};
    externalBuffer5              = (void*)externalBuffer5_managed.get();

    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_copy(
        handle, transA, transB, A, B, C1, alg, descr, &bufferSize5, externalBuffer5));

    externalBuffer3_managed.reset(nullptr);
    externalBuffer3 = nullptr;

    // Query SpGEMM compute buffer

    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_compute(
        handle, transA, transB, &h_alpha, A, B, &h_beta, C1, typeT, alg, descr));

    CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
    CHECK_HIP_ERROR(hipMemcpy(
        dcsr_row_ptr_C_2, dcsr_row_ptr_C_1, sizeof(I) * (m + 1), hipMemcpyDeviceToDevice));
    CHECK_HIP_ERROR(
        hipMemcpy(dcsr_col_ind_C_2, dcsr_col_ind_C_1, sizeof(J) * nnz_C_1, hipMemcpyDeviceToDevice))
    CHECK_HIP_ERROR(
        hipMemcpy(dcsr_val_C_2, dcsr_val_C_1, sizeof(T) * nnz_C_1, hipMemcpyDeviceToDevice));

    CHECK_HIPSPARSE_ERROR(hipsparseCreateCsr(&C2,
                                             m,
                                             n,
                                             nnz_C_1,
                                             dcsr_row_ptr_C_2,
                                             dcsr_col_ind_C_2,
                                             dcsr_val_C_2,
                                             typeI,
                                             typeJ,
                                             idxBaseC,
                                             typeT));

    CHECK_HIPSPARSE_ERROR(hipsparseSpGEMMreuse_compute(
        handle, transA, transB, d_alpha, A, B, d_beta, C1, typeT, alg, descr));

    externalBuffer4_managed.reset(nullptr);
    externalBuffer4 = nullptr;

    externalBuffer5_managed.reset(nullptr);
    externalBuffer5 = nullptr;

    // Copy output from device to CPU
    std::vector<I> hcsr_row_ptr_C_1(m + 1);
    std::vector<I> hcsr_row_ptr_C_2(m + 1);
    std::vector<J> hcsr_col_ind_C_1(nnz_C_1);
    std::vector<J> hcsr_col_ind_C_2(nnz_C_2);
    std::vector<T> hcsr_val_C_1(nnz_C_1);
    std::vector<T> hcsr_val_C_2(nnz_C_2);

    CHECK_HIP_ERROR(hipMemcpy(
        hcsr_row_ptr_C_1.data(), dcsr_row_ptr_C_1, sizeof(I) * (m + 1), hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(
        hcsr_row_ptr_C_2.data(), dcsr_row_ptr_C_2, sizeof(I) * (m + 1), hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(
        hcsr_col_ind_C_1.data(), dcsr_col_ind_C_1, sizeof(J) * nnz_C_1, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(
        hcsr_col_ind_C_2.data(), dcsr_col_ind_C_2, sizeof(J) * nnz_C_2, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(
        hipMemcpy(hcsr_val_C_1.data(), dcsr_val_C_1, sizeof(T) * nnz_C_1, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(
        hipMemcpy(hcsr_val_C_2.data(), dcsr_val_C_2, sizeof(T) * nnz_C_2, hipMemcpyDeviceToHost));

    // Compute SpGEMM nnz of C on host
    std::vector<I> hcsr_row_ptr_C_gold(m + 1);

    int64_t nnz_C_gold = csrgemm2_nnz(m,
                                      n,
                                      k,
                                      &h_alpha,
                                      hcsr_row_ptr_A.data(),
                                      hcsr_col_ind_A.data(),
                                      hcsr_row_ptr_B.data(),
                                      hcsr_col_ind_B.data(),
                                      (const T*)nullptr,
                                      (const I*)nullptr,
                                      (const J*)nullptr,
                                      hcsr_row_ptr_C_gold.data(),
                                      idxBaseA,
                                      idxBaseB,
                                      idxBaseC,
                                      HIPSPARSE_INDEX_BASE_ZERO);
    // Verify nnz and row pointer array
    unit_check_general(1, 1, 1, &nnz_C_gold, &nnz_C_1);
    unit_check_general(1, 1, 1, &nnz_C_gold, &nnz_C_2);
    unit_check_general(1, m + 1, 1, hcsr_row_ptr_C_gold.data(), hcsr_row_ptr_C_1.data());
    unit_check_general(1, m + 1, 1, hcsr_row_ptr_C_gold.data(), hcsr_row_ptr_C_2.data());

    // Compute SpGEMM on host
    std::vector<J> hcsr_col_ind_C_gold(nnz_C_gold);
    std::vector<T> hcsr_val_C_gold(nnz_C_gold);

    csrgemm2(m,
             n,
             k,
             &h_alpha,
             hcsr_row_ptr_A.data(),
             hcsr_col_ind_A.data(),
             hcsr_val_A.data(),
             hcsr_row_ptr_B.data(),
             hcsr_col_ind_B.data(),
             hcsr_val_B.data(),
             (const T*)nullptr,
             (const I*)nullptr,
             (const J*)nullptr,
             (const T*)nullptr,
             hcsr_row_ptr_C_gold.data(),
             hcsr_col_ind_C_gold.data(),
             hcsr_val_C_gold.data(),
             idxBaseA,
             idxBaseB,
             idxBaseC,
             HIPSPARSE_INDEX_BASE_ZERO);

    // Verify column and value array

    unit_check_general(1, nnz_C_gold, 1, hcsr_col_ind_C_gold.data(), hcsr_col_ind_C_1.data());

    unit_check_general(1, nnz_C_gold, 1, hcsr_col_ind_C_gold.data(), hcsr_col_ind_C_2.data());

    unit_check_general(1, nnz_C_gold, 1, hcsr_val_C_gold.data(), hcsr_val_C_1.data());
    unit_check_general(1, nnz_C_gold, 1, hcsr_val_C_gold.data(), hcsr_val_C_2.data());

    // Clean up
    CHECK_HIPSPARSE_ERROR(hipsparseDestroySpMat(A));
    CHECK_HIPSPARSE_ERROR(hipsparseDestroySpMat(B));
    CHECK_HIPSPARSE_ERROR(hipsparseDestroySpMat(C1));
    CHECK_HIPSPARSE_ERROR(hipsparseDestroySpMat(C2));

    return HIPSPARSE_STATUS_SUCCESS;
#endif
}

#endif // TESTING_SPGEMM_CSR_HPP